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lntroduction 

Background 

Due to population expansion as well as agricultural and industrial growth, 
pollution of freshwater aquifers is becoming more and more apparent, espe- 
cially when considering the increasing demand on the quality and quantity of 
fresh water. Often when a contaminant is introduced into the groundwater 
system, clear changes in the groundwater density occur that may be suffi- 
ciently large to alter the flow dynamics of the system. The pollutant may 
either displace or mix with the fresh water. The consequence is frequently the 
degradation or loss of the water resource and the need to seek alternative 
supplies of fresh water or to purify the polluted water body. The best-known 
case of such an occurrence is saltwater intrusion. Saltwater intrusion often 
occurs when, due to the rising demand for fresh water, groundwater is exces- 
sively pumped to satisfy this need. The hydraulic gradients that are produced 
from the excessive pumping may induce a flow of saline water toward the 
pumping well. Thus, this seawater encroachment can easily upset the long- 
term natural equilibrium between the fresh water and seawater. Inevitably the 
seawater wedge moves inland, encroaching on the underground supply of 
fresh water. 

The major causes of saltwater intrusion are overpumping in coastal areas, 
excessive pumping in noncoastal regions which overlay saline water bodies, 
advancement of salt water through leaky well casings, and natural sources and 
processes such as drought or tidal variations (Atkinson et al. 1986). Such 
encroachment will obviously limit the groundwater for domestic, agricultural, 
or industrial purposes. Hence, there is a need to predict the location and 
movement of the saltwater interface in order to be able to protect freshwater 
aquifers from the possible danger of contamination. Practical management 
also includes some knowledge of not only the present response, but also of the 
long-term transient response. For these managerial purposes, a numerical 
model can easily assist in estimating the location of the salt water for given 
sets of hy..  logic conditions. 

In the past, several numerical models have been used to predict the loca- 
tion and movement of the saltwater interface for different types of problems. 
Depending on the method of treating the interface, these numerical models can 
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be categorized as the following: (a) sharp interface models and (b) diffused 
(dispersed) interface models (Contractor and Srivastava 1990). The former 
type was used to investigate the saltwater interface by a number of researchers 
(Liu et al. 1981; Henry 1959; Shamir and Dagan 1971; Wilson and Sa da 
Costa 1982). However, in many cases, the sharp interface assumption is 
justified only to provide an appropriate simulation under certain conditions, 
such as when the width of the transition zone is relatively small compared to 
the thickness of the aquifer. The sharp interface assumption was applied by 
many investigators since when combined with the Dupuit assumption of hori- 
zontal flow, this assumption greatly simplifies the model. Various numerical 
methods, such as the finite difference methods, finite element methods, and 
the method of characteristics, have been applied in sharp interface models, 
some with much success, some with less success. In addition, numerical 
models based on the boundary integral equation method, assuming an abrupt 
interface, have been presented (Liggett and Liu 1979; Liu et al. 1981). 

Nevertheless, the sharp interface approach can be troublesome when the 
change in the shape of intrusion is large and/or the aquifer system is complex. 
This becomes quite apparent when applying the finite element method to the 
problem of the interface. If, as in the sharp interface approach, the fresh 
water and salt water are assumed to be immiscible, then certain conditions 
along the interface boundary must be satisfied. Hence, when the finite ele- 
ment method is applied, the position of the interface must be specified in 
order to partition each fluid region into individual elements. Needless to say, 
the finite element method becomes quite difficult in the sharp interface model. 

Therefore, a simulation model, such as the diffusive interface model, 
which accounts for the hydrodynamic effects of dispersion, is much more 
practical since it gives more details concerning the transition zone, whereas 
the sharp interface model only represents the overall flow characteristics of 
the system. Also, the diffusive interface model annihilates the difficulty due 
to the inner boundary even if the aquifer system is quite complex (Essaid 
1990). 

As early as 1964, Henry developed the first solution for the steady-state 
salt distribution in a confined coastal aquifer. He assumed a constant disper- 
sive mechanism in the aquifer and concluded that the steady-state condition is 
in dynamic equilibrium due to the gravitational forces and dispersion that 
create a saltwater convection cell. Henry's problem was restated by Lee and 
Cheng (1974) in terms of stream functions. They formulated a numerical 
solution which assumed constant dispersion. In 1975,. Segol, Pinder, and 
Gray (1975) developed the first transient solution based on a velocity- 
dependent dispersion coefficient using the Galerkin finite element method to 
solve the set of nonlinear partial differential equations describing the move- 
ment of a saltwater front in a coastal confined aquifer. Numerous other 
researchers, such as Pinder and Cooper (1970), Andrews (1981), and more 
recently Frind (1982a,b), and Huyakorn et al. (1987) have used numerical 
models for simulation of saltwater intrusion problems using the diffusive 
interface approach. Some of the numerical diffusive interface models 

Chapter 1 Introduction 



unfortunately do not consider density-dependent fluid flow and solute transport 
for mathematical simplification reasons. On the other hand, many models 
(Pinder and Cooper 1970; Lee and Cheng 1974; Frind 1982a,b; Huyakorn et 
al. 1987) do. In many cases, however, a steady-state solution in transient 
simulations was not obtained due to high computing costs. 

Adequate knowledge about the physical dynamics of the phenomenon of 
saltwater encroachment is necessary for the proper management of coastal 
groundwater resources. Hence, in order to portray the physical complexities 
and also the temporal and spatial variations involved with saltwater intrusion, 
the development of numerical models has become quite essential. For this 
purpose, a Three-Dimensional Finite Element Model for Density-Dependent 
Flow and Transport Through Saturated-Unsaturated Porous Media (3DSALT) 
has been developed. This model stems from the combination and modification 
of two previous codes, a groundwater flow model (FEMWATER, Yeh 1987) 
and a subsurface contaminant transport model (LEWASTE, Yeh 1992). In the 
newly combined model, density-dependent effects are accounted for, since 
according to Reilly and Goodman (1985), it is necessary to consider the sea- 
water intrusion problem as a density-dependent flow and transport problem in 
order to account for the dispersed nature of the saltwater-freshwater interface 
and the associated saltwater circulation zones. 

Even though the model, 3DSALT, can be used to investigate saturated- 
unsaturated flow alone, contaminant transport alone, or combined flow and 
transport, in this report the code will be used to study seawater intrusion 
problems, thus using the last option. The code will be verified with similar 
simulations of other numerical models. 

In addition, general facts, such as sources, effects, and control of seawater 
intrusion, as well as physical and mathematical theory, will be presented to 
complete this study of saltwater intrusion. 

In comparison, sea water is around 2.5 percent heavier than fresh water. 
Based on the relation, a 12.5-m freshwater column is needed to keep a 12.2-m 
seawater column in balance. Therefore, within a reasonable distance from the 
ocean, theoretically every 0.30 m of fresh water above sea level signifies the 
existence of 12.2 m of fresh water in tb- 2quifer below sea level. To alleviate 
the endless danger of sea water encr0aci:iilg inland, the freshwater levels must 
be maintained as high as practicable above sea level (Atkinson et al. 1986). 

Unfortunately, saltwater intrusion in coastal areas occurs all over the 
world. Investigation of the sources of salt water intrusion is very crucial since 
saltwater is probably the most common contaminant in fresh water. In the 
case of coastal aquifers, it arises from a seawater invasion. In all too many 
cases, human activities are directly or indirectly responsible for saltwater 
intrusion in coastal environments, which are often heavily urbanized. 

According to Atkinson et al. (1986), salt water present in aquifers may 
derive from the following sources: 
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a. Seawater, in coastal regions. 

b. Seawater that penetrated aquifers during past geological time. 

c. Evaporated water residue left over in tidal lagoons, playas, etc. 

d. Salt from thin salt beds or salt domes or disseminated in geological 
formations. 

e. Saline wastewaters from human activities. 

f. Return flows from irrigated land to stream. 

Saltwater intrusion into freshwater aquifers can be influenced in various 
ways. For example, if the groundwater gradients are reduced or reversed, 
then denser, saline water can easily take the place of the fresh water. This 
occurrence is quite common in coastal aquifers, which are hydraulically con- 
tinuous with the ocean and in which excess well pumping has disturbed the 
hydrodynamic equilibrium. Another example is when natural barriers separat- 
ing the fresh water and salt water are removed, or when there is a subsurface 
disposal of waste salt waters (Atkinson et al. 1986). 

Saltwater intrusion can have negative and undesirable effects. Humans 
may experience health and welfare problems related to decreased water 
quality. As little as 2 percent of seawater in fresh water can make it undrink- 
able. Wildlife and fish may also be adversely affected by either high salinity 
of springs used for watering or high saline runoff. High saltwater content in 
irrigation waters may decrease crop productivity and make it essential to 
change to salt-tolerant crops. In addition, salt water can be unacceptable for 
many industrial purposes (Atkinson et al. 1986). 

To control or combat all the possible adverse effects of saltwater intrusion, 
a control program must be implemented that takes into consideration the type 
of encroachment, the hydrologic conditions of the region in question, the areal 
extent of the problem, as well as the specific source(s). The control of salt- 
water intrusion can be summarized in a general approach of five steps 
(Atkinson et al. 1986) : 

a. Problem definition. 

b. Inventory and analysis. 

c. Formulation of alternative control plans. 

d. Comparative evaluation of control plans. 

e. Selection and implementation of controls. 
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The first and probably the most important step to controlling seawater 
encroachment is locating and defining the magnitude of the problem. Ground- 
water monitoring can be used for that purpose. After completion of the first 
step, an inventory of water users is taken to identify patterns, especially if 
overpumping is occurring. Also, the development of mathematical or numeri- 
cal models comes about here to help predict and understand the movement of 
the salt water. The third step involves the formulation of various alternative 
seawater intrusion control plans. The fourth step involves the comparative 
evaluation of control plans, in other words, to investigate if the water quality 
cannot be brought to the desired levels by other methods than control. The 
last step involves the formulation of legal and institutional considerations in 
order to implement the selected method of control (Atkinson et al. 1986). 

According to Atkinson et al. (1986), the objective of seawater intrusion 
control depends on the planned function of water and involves one of the 
following: 

a. Partial or complete avoidance of fresh water migrating seaward. 

b. Increasing the rate of flow within the aquifer or the size of the 
freshwater lens by increasing the freshwater pressures. 

c. Preserving a state of seawater intrusion that will not further encroach on 
the freshwater supply by controlling several methods of freshwater with- 
drawal in given regions. 

In order to meet these objectives, the following methods can be applied in 
the control of seawater intrusion (Atkinson et al. 1986): 

a. Directly recharge the aquifer. 

b. Reduce or, in some cases, eliminate pumping. 

c. Relocate or disperse pumping wells. 

d. Form a hydraulic barrier by recharging fresh water into pumping wells 
parallel to the coast. 

e. Remove encroaching salt water by constructing a trough parallel to the 
coast. 

f. Remove seawater before it reaches the pumping well. 

g. Create impermeable subsurface barriers. 

h. Combine extractionlinjection techniques. 

Just which control technique to use in which case can be summarized in 
Table 1.1 (Bowen 1986). 
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There are various hydrogeologic conditions in coastal aquifers. Some of 
the most common examples are depicted in Figure 1.1 (Essaid 1990). Fig- 
ures l . l(a) and (b) portray an unconfined aquifer with an impermeable bottom 
and an unconfined island aquifer with a free bottom, respectively, whereas 
Figure 1.1 (c) shows a coastal confined aquifer. 

Table 1 .I 
Techniques of Saltwater Control 

Figure 1.2 depicts an idealized cross section of a layered coastal aquifer 
under steady-state and transient conditions. In the steady-state case (Fig- 
ure 1.2(a)), there is a stable seaward hydraulic gradient within each aquifer. 
The location and shape of a stationary "interface" between the fresh water and 
salt water is determined by the freshwater potential and gradient. As the sea- 
water flows in from the sea within every aquifer layer, a wedge-shaped body 
of denser salt water settles underneath the lighter fresh water. Fresh water in 
the lower (confined) aquifers may leak upward through the overlying layers 
and/or discharge through the outcrop, while fresh water in the top 
(unconfined) aquifer discharges to the sea via the ocean floor. In a system, 
such as Figure 1.2(a), the zone of mixed fresh water and salt water will not be 
static since there might be fresh water leaking vertically upward into an over- 
lying saltwater zone. However, if the system were of a one-layer aquifer con- 
figuration, the seawater would be nearly static. 

Cause of Intrusion 

Saltwater in a coastal aquifer 

Upconing 

Defective well casing 

Saline water zones in freshwater 
aquifers 

Surface infiltration 

Oil field brine 

On the other hand, in the transient case (Figure 1.2(b)), salt water may 
flow into the aquifer system by leaking into the confining layers as well as 
ocean floor and/or by entering through the outcrop. Gradually the "interface" 
will move inland and encroach on the freshwater supply. Hence, the 
dynamics of both the freshwater and saltwater domains must be investigated in 
order to get a complete picture of the seawater intrusion in coas.ta1 aquifers, 
especially when developing numerical models for saltwater intrusion problems 
(Essaid 1990). 

Control Techniques 

Alteration of the pumping pattern 
lnjection freshwater well 
lnjection barrier 
Extraction barrier 
Subsurface barrier 

Alternation of the pumping pattern 
Saline removing wells 

Plugging defective wells 

Relocating and designing wells 

Eliminating the surface source 

Injection wells 
Eliminating surface disposal 
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Freshwater 

Figure 1 . I .  Common examples of hydrogeological conditions in coastal 
aquifers (from Essaid 1990) 
(a) Phreatic aquifer with an impermeable bottom 
(b) Phreatic island aquifer with a free bottom 
(c) Confined aquifer 
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(a) 

(b) - Freshwater - 
Figure 1.2. Idealized cross-sections of a layered coastal aquifer (from 

Essaid 1990) 
(a) Steady-state case 
(b) Transient case 

In the freshwater region of coastal aquifers, the flow can sometimes be 
easily altered by inland changes of discharge or recharge. If the freshwater 
flow towards the sea is reduced by some means, this may cause the 
freshwater-saltwater interface to migrate landward, thus resulting in saltwater 
intrusion into the aquifer. On the other hand, if the freshwater flow towards 
the sea is increased, the interface may be forced to move towards the sea. 
Nevertheless, the rate of the interface movement as well as the transient 
aquifer head response will be determined by the properties of the aquifer and 
the boundary conditions on both sides of the interface. Generally, the changes 
in inland freshwater discharge that determine the rate of the interface 
movement in the aquifer affect the freedom of the salt water to move into or 
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out of a coastal aquifer system. Hence, it is very important to examine the 
interface and describe its properties in a realistic fashion (Essaid 1990). 

Both disperse and sharp interface approaches have been used by numerous 
researchers to study saltwater intrusion in coastal aquifers via numerical 
models. However, as also discussed, the sharp interface approach may be an 
adequate first approximation in some cases, but in may other cases, the zone 
of dispersion might be quite extensive, making the sharp interface approach a 
very poor approximation. In some studies, such as field observations in the 
Biscayne aquifer, Florida, for example, the error of using a sharp instead of a 
disperse interface approach can be as much as a few miles seaward. Such an 
error clearly demonstrates that a sharp interface model cannot fully represent 
the nature of saltwater intrusion, at least not for some coastal aquifers that 
experience a thick mixing zone generated by freshwater and saltwater disper- 
sion (Lee and Cheng 1974). In addition, it has been revealed by actual mea- 
surements that the dispersion-diffusion phenomena may heavily contribute to 
notable fluctuations of the water table in coastal aquifers (De Wiest 1965). 

One of the early researchers, Beran (1955), investigating the freshwater- 
saltwater interface, described three cases of flow: (a) when the effects of 
molecular diffusion are prevailing; (b) when the randomness of the flow 
pattern is as significant as the molecular diffusion in the mixing process; 
(c) when the effects of randomness of the flow pattern and molecular diffusion 
are insignificant (Sherif, Singh, and Arner 1990). 

As stated, in reality, where the fresh water and salt water merge, a disper- 
sion zone of finite thickness occurs due to the effects of hydrodynamic disper- 
sion (mechanical dispersion and molecular diffusion). No distinct interface 
exists since the fresh water and sea water are considered soluble in each other. 
This transition zone also is influenced by the action of tides and well 
pumping. Maximum widths of the transition zone occur in extremely 
permeable coastal aquifers that are exposed to heavy pumping. According to 
Volker and Rushton (1982), the extent of the dispersion zone is dependent on 
numerous factors, such as the dispersion parameters of the coastal aquifer and 
the rate of discharge of the groundwater, as well as the relative densities of 
the fresh water and salt water. In this dispersion zone, the concentration and 
thus the fluid density vary. Dispersion results in a change of concentration of 
the displacing fluid in the transition zone, basically due to the fact that 
individual fluid particles travel at variable velocities through the irregularly 
and randomly shaped pore channels of the medium. The flow pattern in the 
aquifer will obviously be altered by this transition zone. Since the transition 
zone is moving towards the sea, the saline water coming from underlying 
sources flows in the same direction. Therefore, due to continuity, the flow is 
inland in the saltwater region. In addition, the groundwater salinity increases 
with depth from that of fresh water to that of salt water in the transition zone 
(Bowen 1986). 

Figure 1.3 illustrates the transition zone between the fresh water and salt 
water in a coastal aquifer. It can be seen that the salt water tends to force 
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Freshwater  

Sa 1 t w a t e r  

Figure 1.3. Illustration of transition zone and circulation (from Essaid 1990) 

itself underneath the fresh water due to the higher density of the salt water. 
The "diluted" salt water ascends and moves towards the sea along the inter- 
face due to the fact that it is less dense than the original seawater. The 
transfer of salts out of the saltwater environment induces circulation. Due to 
this movement, there exists a cyclic flow of saltwater originating from the sea, 
across the ocean floor, to the transition zone, and back to the sea. Even 
under steady-state conditions, this cyclic flow is evident (Essaid 1990). 

The model developed in this research is designed to solve a system of 
governing equations pertaining both to flow and transport through saturated- 
unsaturated media. Numerical simulation of contaminant transport in subsur- 
face systems involves the solution of two partial differential equations. The 
first differential equation is the flow equation that describes the head distribu- 
tion in the aquifer of interest. For the developed model, the classically used 
pressure head variable employed in the fluid continuity equation of many flow 
modules was replaced by the use of equivalent freshwater head that generally 
results in the elimination of static quantities and the improvement of numerical 
efficiency (Frind 1982b). If the head distribution is known, then the flow can 
be calculated via Darcy's law. The other differential equation is the transport 
(dispersion) equation which is used to describe the chemical concentration. In 
the specific case of saltwater intrusion, a constitutive equation that relates fluid 
density to concentration is also needed (Galeati, Gambolati, and Neuman 
1992). Furthermore, the two partial differential equations are coupled in such 
a way that makes, for instance, the seawater intrusion problem nonlinear. 
Buoyancy effects that cause the upward movement of the fresh water and sea 
water near the coast primarily affect the degree of nonlinearity (Huyakorn 
et al. 1987). The coupling is solved in such a way that the groundwater flow 
and solute transport equations are solved independently and linked through 
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iterations. In addition, initial and boundary conditions must be accounted for 
when solving this system of governing equations. 

Purpose 

The purpose of this report is to provide guidance for users to use the 
3DSALT model for site-specific application especially for salt intrusion 
problems in coastal areas. 

3DSALT (A Three-Dimensional Finite Element Model of Density- 
Dependent Flow And Transport Through Saturated-Unsaturated Media) can be 
used to investigate saturated-unsaturated flow alone, contaminant transport 
alone, combined flow and transport, or salt intrusion problems in subsurface 
media. For the flow module, the Galerkin finite element method is used to 
discretize the Richards equation; and for the transport module, the hybrid 
Lagrangian-Eulerian finite element method is used to discretize the transport 
equation. Using the hybrid Lagrangian-Eulerian approach completely elimi- 
nates numerical oscillation due to advection transport. Large time-step sizes 
can be used to overcome excessive numerical dispersion. The only limitation 
on the size of time-step is the requirement of accuracy with respect to disper- 
sion transport, which does not pose severe restrictions. 

Scope 

The scope of this report is to derive and solve the governing equations for 
density-dependent flow and transport in saturated-unsaturated media. The 
report also provides the description of a main program and subroutines. 
Three sample problems were provided to illustrate the application of using the 
model. 

The section "Purpose of 3DSALT," Chapter 2, lists the governing equa- 
tions and describes initial and boundary conditions for which 3DSALT is 
designed to provide solutions. The section "Description of 3DSALT Sub- 
routines," Chapter 2, contains the description of all subroutines in 3DSALT. 
This should facilitate the understanding of the code structure by the users. 
Since occasions may arise when the users have to modify the code, this sec- 
tion should help them to trace the code so they can make necessary adjust- 
ments for their purposes. General information on input parameters required 
by each subroutine is also provided. The section "Parameter Specifications, " 
Chapter 3, contains the parameter specification. For each application, users 
must assign 58 maximum control-integers. The section "Soil Property Func- 
tion Specifications," Chapter 3, describes sol p-operty function specifications 
so that the users will be able to modify subrou~ine SPRO for each site-specific 
application. The section "Input and Output Devices, " Chapter 3, describes 
files required for the execution of 3DSALT. Appendix A contains the data 
input guide that is essential for any site-specific application. 
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The users may choose whatever units they want to use provided they are 
maintained in all the input. Units of mass (M), length (L), and time (T) are 
indicated in the input description. 

The special features of 3DSALT are its flexibility and versatility in model- 
ing a range of real-world problems. The model is designed to do the 
following: 

a. Treat heterogeneous and anisotropic media consisting of as many geo- 
logic formations as desired. 

6 

b. Consider both distributed and point sources/sinks that are spatially and 
temporally dependent. 

c. Accept the prescribed initial conditions or obtain them by simulating a 
steady-state version of the system under consideration. 

d. Deal with transient Dirichlet boundary conditions. 

e. Handle time-dependent fluxes due to the gradient of pressure head or 
concentration varying along the Neumann boundary. 

f. Treat time-dependent total fluxes distributed over the Cauchy boundary. 

g. Automatically determine variable boundary conditions of evaporation, 
infiltration, or seepage on the soil-air interface for the flow module and 
variable boundary conditions of inflow and outflow for the transport 
module. 

h. Include the off-diagonal hydraulic conductivity components in Richards 
equation for dealing with cases when the coordinate system does not 
coincide with the principal directions of the hydraulic conductivity 
tensor. 

i. Give three options for estimating the nonlinear matrix. 

j. Include two options (successive subregion block iterations and 
successive point iterations) for solving the linearized matrix equations. 

k. Provide two options of treating the mass matrix - consistent and 
lumping. 

I .  Provide three adsorption models in the transport module - linear 
isotherm and nonlinear Langmuir and Freundlich isotherms. 

m. Automatically reset time-step size when boundary conditions or 
source/sinks change abruptly. 
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n. Check the mass balance computation over the entire region for every 
time-step. 

Appendix B provides the physical bases and mathematical foundation for 
describing density-dependent flow and material transport. Appendix C gives 
the numerical detail in approximating the governing equations. Readers who 
wish to comprehend salt intrusion problems and understand numerical 
approaches should read these two appendices. For practitioners they may be 
skipped. 
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2 The 3DSALT Program 
Structure 

Purpose of 3DSALT 

3DSALT is designed to solve the following system of governing equations 
along with initial and boundary conditions, which describe flow and transport 
through saturated-unsaturated media. The governing equations for flow are 
basically the modified Richards equation, which is derived in Appendix B. 

Governing flow equation 

where h is the pressure head, t is time, K is the hydraulic conductivity tensor, 
z is the potential head, q is the source and/or sink, p is the water density at 
chemical concentration C, p, is the referenced water density at zero chemical 
concentration, p* is the density of either the injection fluid or the withdrawn 
water, and 0 is the moisture content. The hydraulic conductivity K is given 

by 

where p is the dynamic viscosity of water at chemical concentration C; p, is 
the referenced dynamic viscosity at zero chemical concentration; k is the per- 
meability tensor; k, is the saturated permeability tensor; k, is the relative 
permeability or relative hydraulic conductivity; K,, is the referenced saturated 
hydraulic conductivity tensor. The referenced value is usually taken at zero 
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chemical concentration. The density and dynamic viscosity of water are func- 
tions of chemical concentration and are assumed to take the following form 

and 

where a,, a,, . . . , a, are the parameters used to define concentration depen- 
dence of water density and viscosity and C is the chemical concentration. 

The Darcy velocity is calculated as follows 

Initial conditions for flow equation 

where R is the region of interest and hi is the prescribed initial condition, 
which can be obtained by either field measurements or by solving the steady- 
state version of Equation 2.1. 

Boundary co~iditions for flow equations 

Dirichlet conditions: 
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Nemann conditions: 

P o  -n.K--Vh = ~ , , ( x ~ , Y ~ , z ~ , ~ )  O n  B,,, 
P 

Cauchy conditions: 

Variable conditions during precipitation period: 

= hp(xb9~b>~b9 t )  On Bv 

Variable conditions during nonprecipitation period: 

h = hp(xb9yb,zb9t) O n  Bv, 

where (xb,yb,zb) is the spatial coordinate on the boundary; n is an outward unit 
vector normal to the boundary; b, q,,, and q, are tlie prescribed Dirichlet 
functional value, Neumann flux, and Cauchy flux, respectively; B,, B,, and B, 
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are the Dirichlet, Neumann, and Cauchy boundaries, respectively; B, is the 
variable boundary; h, is the allowed ponding depth; and q, is the throughfall 
of precipitation, respectively, on the variable boundary; h, is the allowed 
minimum pressure on the variable boundary; and q, is the allowed maximum 
evaporation rate on the variable boundary, which is the potential evaporation. 
Only one of Equations 2.8a through 2.8e is used at any point on the variable 
boundary at any time. 

The governing equations for transport are derived based on the continuity 
of mass and flux laws as given in Appendix B. The major processes are 
advection, dispersionldiffusion, adsorption, decay, and source/sink. 

Governing equations for transport 

S = K,C for linear isotherm (2.10a) 

S = 
SmaxKC for Langmuir isotherm 
1 + KC 

S = KCn for Freundlich isotherm (2.1 Oc) 

where 19 is the moisture concentration, p, is the bulk density of the medium 
(MIL3), C is the material concentration in aqueous phase (MIL3), S is the 
material concentration in adsorbed phase (MIM), t is time, V is the discharge, 
V is the del operator, D is the dispersion coefficient tensor, X is the decay 
constant, Q is the source rate of water, C, is the material concentration in the 
source, K, is the distribution coefficient, S,,, is the maximum concentration 
allowed in the medium in the Langmuir nonlinear isotherm, n is the power 
index in the Freundlich nonlinear isotherm, and K is the coefficient in the 
Langmuir or Freundlich nonlinear isotherm. 

The dispersion coefficient tensor D in Equation 2.9 is given by 

OD = aTl V16 + (a, - aT)WII VI + Oa,,,76 (2.11) 
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where I VI is the magnitude of V, 6 is the Kronecker delta tensor, a, is 
lateral dispersivity, a, is the longitudinal dispersivity, a, is the molecular 
diffusion coefficient, and 7 is the tortuosity. 

Initial conditions for transport: 

Prescribed concentration (Dirichlet) boundary conditions: 

Variable boundary conditions: 

Cauchy boundary conditions: 

Neumann boundary conditions: 

where Ci is initial concentration; R is the region of interest; (x,,yb,zb) is the 
spatial coordinate on the boundary; n is an outward unit vector normal to the 
boundary; C, and C, are the prescribed concentration on the Dirichlet bound- 
ary and the specified concentration of water through the variable boundary, 
respectively; B, and B, are the.Dirichlet and variable boundaries, respectively; 
q, and a are the prescribed total flux and gradient flux through the Cauchy 
and Neumann boundaries B, and B,, respectively. 

Since the hybrid Lagrangian-Eulerian approach is used to simulate Equa- 
tion 2.9, it is written in the Lagrangian-Eulerian form as 
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V, = for linear isotherm model 
0 + P,K, 

v V, = - for Freundlich and Lungumir models (2.18b) 
e 

where V, and V, are the retarded and fluid pore velocities, respectively; and 
Dvj)ldt and Dv,Oldt denote the material derivative of ( ) with respect to time 
using the retarded and fluid pore velocities, respectively. 

The flow equation (2.1) subject to initial and boundary conditions (Equa- 
tions 2.5 through 2.8) is solved with the Galerkin finite element method. The 
transport equations (Equations 2.17 or 2.18) subject to initial and boundary 
conditions (Equations 2.12 through 2.16) are solved with the hybrid 
Lagrangian-Eulerian finite element methods. Detail implementation of the 
numerical approximation of flow and transport problems are given in 
Appendix C. 

Description of 3DSALT Subroutines 

3DSALT consists of a MAIN program and 57 subroutines. The program 
structure of 3DSALT is iliustrated in Figure 2.1. The functions of the MAIN 
program and the subroutines are described below. 

Program MAIN 

The MAIN is used to specify the sizes of all arrays. The flow of data 
input for the model is also anchored by the MAIN. The subroutine RDATIO 
is called to read the geometric and material data. MAIN then calls subroutine 
PAGEN to generate pointer arrays; SURF to identify the boundary sides and 
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Figure 2.1 Program structure of 3DSALT (Sheet 1 of 3) 
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Figure 2.1. (Sheet 2 of 3) 

HYDRO 

Chapter 2 The 3DSALT Program Structure 

ESSFCT 

WSSFCT 

CBVFCT 

NBVFCT 

- 

- 

-- 

- 

- 

SPROP 

- 
BCPREP 

FASEMB - 

Q4S 

FQ8 BASE 



CHEMI 1 

Q4ADB ADVBC 

FH-~ ALGBDY 

XSI3D BASE 1 

TBC Q4CNVB 

- 

POLYP 

ILUCG LLTINV 

TASEMB TQ8 SHAPE 

TSFLOW 

4-i-, 
TPRINT / F 

Figure 2.1. (Sheet 3 of 3) 
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compute the directional cosine. The sourcelsink data for flow and transport 
computations are read in by the subroutines FSSDAT and TSSDAT, respec- 
tively. The boundary conditions for flow and transport calculations are then 
read in by the subroutines FBCDAT and TBCDAT, respectively. Control is 
then passed to subroutine GWM3D to coordinate and perform flow andlor 
transport computations. 

Subroutine RDATIO 

The subroutine RDATIO is called by the program MAIN to read in the soil 
property functions and geometric data for the area of interest. 

Subroutine FSSDAT 

The subroutine FSSDAT is called by the program MAIN to read in the 
sources/sinks profiles, nodes, andlor elements for flow simulations. The 
sourcelsink type for each nodelelement is also assigned in this subroutine 
according to the data given by the users. 

Subroutine TSSDAT 

The subroutine TSSDAT is called by the program MAIN to read in the 
sourceslsinks profiles, nodes, andlor elements for transport simulations. The 
sourcelsink type for each nodelelement is also assigned in this subroutine 
according to the data given by the users. 

Subroutine FBCDAT 

The subroutine FBCDAT controls the input of boundary condition, in time 
and space, assigned to each boundary nodelelement for flow simulations. 
Users need to give the boundary profiles, to specify the global nodelelement 
numbers of the boundary, and to assign boundary profile type to each 
nodelelement. 

Subroutine TBCDAT 

The subroutine TBCDAT controls the input of boundary condition, in time 
and space, assigned to each boundary nodelelement for transport simulations. 
Users need to give the boundary pr->files, to specify the global nodelelernt- 
numbers of the boundary, and to as31gn boundary profile type to each 
nodelelement. 
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Subroutine GWM3D 

The subroutine GWM3D controls the entire sequence of operations, a func- 
tion generally performed by the MAIN program. It is, however, preferable to 
keep a short MAIN and supplement it with several subroutines with variable 
storage allocation. This makes it possible to place most of the FORTRAN 
deck on a permanent file and to deal with a site-specific problem without 
making changes in array dimensions throughout all subroutines. 

Depending on the combinations of the parameters KSSf, KSSt, NTI, and 
IMOD, the subroutine GWM3D will perform either the steady-state flow 
and/or transport computations only, or the transient-state flow and/or transport 
computations using the flow and/or transport steady-state solution as the initial 
conditions, or the transient flow and/or transport computation using user- 
supplied initial conditions. 

GWM3D calls the subroutines ESSFCT, WSSFCT, CBVFCT, NBVFCT, 
VBVFCT, and DBVFCT to obtain sources/sinks and boundary values; sub- 
routine SPROP to obtain the relative hydraulic conductivity, water capacity, 
and moisture content from the pressure head; subroutine VELT to compute 
Darcy's velocity; subroutine FSFLOW to calculate flux through all types of 
boundaries and water accumulated in the media; subroutine FPRINT to print 
out the results; subroutine FSTORE to store the flow variables for plotting; 
subroutine HYDRO to perform the flow computations; subroutine FLUX to 
compute material flux; subroutine AFABTA to obtain upstream weighting 
factor based on velocity and dispersivity; subroutine TSFLOW to calculate 
material flux through all types of boundaries and water accumulated in the 
media; subroutine TPRINT to print out the transport computation results; sub- 
routine TSTORE to store the transport computation results for plotting; sub- 
routine THNODE to compute the value of moisture content plus bulk density 
times distribution coefficient in the case of linear isotherm, or the moisture 
content in the case of nonlinear isotherm at all nodes; subroutine DISPC to 
compute the dispersion coefficients; and subroutine CHEMI to perform the 
transport computations. 

Subroutine HYDRO 

HYDRO calls subroutines ESSFCT, WSSFCT, CBVFCT, NBVFCT, 
VBVFCT, and DBVFCT to obtain sources/sinks and boundary values; sub- 
routine SPROP to obtain the relative hydraulic conductivity, water capacity, 
and moisture content from the pressure head; subroutine VELT to compute 
Darcy's velocity; subroutine BCPREP to determine if a change of boundary 
conditions is required; subroutine FASEMB to assemble the element matrices 
over all elements; subroutine FBC to implement the boundary conditions; 
subroutine BLKITR, POINTI, PPCG, or ILUCG to solve the matrix equa- 
tions; subroutine FSFLOW to calculate flux through all types of boundaries 
and water accumulated in the media; subroutine FPRINT to print out the 
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results; and subroutine FSTORE to store the flow variables in binary format 
for plotting. 

Subroutine SURF 

Subroutine SURF identifies the boundary sides, sequences the boundary 
nodes, and computes the directional cosine of the surface sides. The 
mappings from boundary nodes to global nodes are stored in NPBB(1) (where 
NPBB(1) is the global node number of i" boundary node). The boundary node 
numbers of the four nodes for each boundary side are stored in ISB(1,J) 
(where ISB(1,J) is the boundary node number of I" node of J" side, I = 1 to 
4). There are six sides for each element. Which of these six sides is the 
boundary side is determined automatically in the subroutine SURF and is 
stored in ISB(5,J). The global element number, to which the J" boundary side 
belongs, is also preprocessed in the subroutine SURF and is stored in 
ISB(6,J). The directional cosines of the J" boundary side are computed and 
stored in DCOSB(1,J) (where DCOSB(1,J) is the directional cosine of the J" 
surface with I" coordinate, I = 1 to 3). The information contained in NPBB, 
ISB, and DOSB, along with the number of boundary nodes and the number of 
boundary sides, is returned to subroutine DATAIN for other users. 

Subroutine READR 

This subroutine is called by the subroutines RDATIO, FBCDAT, and 
TBCDAT to generate real numbers. Automatic generation of regularly 
patterned data is built into this subroutine. 

Subroutine READN 

This subroutine is called by the subroutines RDATIO, FSSDAT, TSSDAT, 
FBCDAT, and TBCDAT to generate integer data automatically. 

Subroutine PAGEN 

This subroutine is called by the controlling subroutine GWM3D to prepro- 
cess pointer arrays that are needed to store the global matrix in compressed 
form and to construct the subregional block matrices. The pointer arrays 
automatically generated in this subroutine include the global node connectivity 
(stencil) GNOJCN(J,N), regional node connectivity LNOJCN(J,I,K), total 
node number for each subregion NTNPLR(K), bandwidth indicator for each 
subregion LMAXDF(K), and partial fill-up for the mapping array between 
global node number and local subregion node number GNPLR(1,k) with I = 

NNPLR(K) + 1 to NTNPLR(K). Here GNOJCN(J,N) is the global node 
number of J" node connected to the global not' Y; LNOJCN(J,I,K) is the 
local node number of J" node connected to the Idcal node I in K" subregion; 
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NTNPLR(K) is the total number of nodes in the K" subregion, including the 
interior nodes, the global boundary nodes, and intraboundary nodes; 
LMAXDF(K) is the maximum difference between any two nodes of any ele- 
ment in K" subregion; and GNPLR(1,K) is the global node number of I"' 
local-region node in the K" subregion. These pointer arrays are generated 
based on the element connectivity IE(M,J), the number of node for each sub- 
region NNPLR(K), and the mapping between global node and local-region 
node GNLR(1,K) with I = 1, NNPLR(K). Here IE(M,J) is the global node 
number of J" node of element M; NNPLR(K) is the number of nodes in the 
K" subregion including the interior nodes and the global boundary nodes but 
not the intraboundary nodes. 

Subroutine ESSFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the element sourcelsink strength. It uses the linear inter- 
polation of the tabular data or uses analytical formulae. If the analytical 
formulae are used, the users must supply the functions. 

Subroutine WSSFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the point sourcelsink strength. It uses the linear 
interpolation of the tabular data or uses analytical formulae. If the analytical 
formulae are used, the users must supply the functions. 

Subroutine DBVFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the pressure at the Dirichlet boundary. It uses the linear 
interpolation of the tabular data or uses aralytical formulae. If the analytical 
formulae are used, the users must supply the functions. 

Subroutine CBVFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the total flux at Cauchy boundary. It uses the linear 
interpolation of the tabular data or uses analytical formulae. If the analytical 
formulae are used, the users must supply the functions. 

Subroutine NBVFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the gradient flux at Neum2nn boundary. It uses the linear 
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interpolation of the tabular data or uses analytical formulae. If the analytical 
formulae are used, the users must supply the functions. 

Subroutine VBVFCT 

This subroutine is called by the subroutines GWM3D, HYDRO, and 
CHEMI to compute the infiltration rate or evaporation rate flux at variable 
boundary. It uses the linear interpolation of the tabular data or uses analytical 
formulae. If the analytical formulae are used, the users must supply the 
functions. 

Subroutine SPROP 

This subroutine calculates the values of moisture content, relative hydraulic 
conductivity, and the water capacity. Either tabular input or analytical func- 
tions can be used to represent soil property function. When analytical func- 
tions are used, the users must supply the functional form. 

Subroutine VELT 

This subroutine calls FQ8DV to evaluate the element matrices and the 
derivatives of the total head. It then sums over all element matrices to form a 
matrix equation governing the velocity components at all nodal points. To 
save computational time, the matrix is diagonalized by lumping. The velocity 
components can thus be solved point by point. The computed velocity field is 
then returned to GWM3D or HYDRO through the argument. This velocity 
field is also passed to subroutine BCPREP to evaluate the Darcy flux across 
the seepage-infiltration-evapotranspiration surfaces. 

Subroutine FQ8DV 

Subroutine FQ8DV is called by the subroutine VELT to compute the 
element matrices given by 

where N,' and N,' are the basis functions for nodal point i and j of element e, 
respectively. Subroutine Q8DV also evaluates the element i o d  vector: 
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where 
hj = the referenced pressure head at nodal point j 

i = the unit vector along the x-coordinate 

j = the unit vector along the y-coordinate 

k = the unit vector along the z-coordinate 

K, = the saturated hydraulic conductivity tensor 

K, = the relative hydraulic conductivity 

Subroutine BCPREP 

This subroutine is called by HYDRO to prepare the infiltration-seepage 
boundary conditions during a rainfall period or the seepage-evapotranspiration 
boundary conditions during nonrainfall periods. It decides the number of 
nodal points on the variable boundary to be considered as Dirichlet or Cauchy 
points. It computes the number of points that change boundary conditions 
from ponding depth (Dirichlet types) to infiltration (Cauchy types), or from 
infiltration to ponding depth, or from minimum pressure (Dirichlet types) to 
infiltration during rainfall periods. It also computes the number of points that 
change boundary conditions from potential evapotranspiration (Cauchy types) 
to minimum pressure, or from ponding depth to potential evapotranspiration, 
or from minimum pressure to potential evapotranspiration during nonrainfall 
periods. Upon completion, this subroutine returns the Darcy flux (DCYFLX), 
infiltrationtpotential evapotranspiration rate (FLX), the ponding depth nodal 
index (NPCON), the flux-type nodal index (NPFLX), the minimum pressure 
nodal index (NPMIN), and the number of nodal points (NCHG) that have 
changed boundary conditions. 
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Subroutine FASEMB 

This subroutine calls FQ8 to evaluate the element matrices. It then sums 
over all element matrices to form a global matrix equation governing the 
pressure head at all nodes. 

Subroutine FQ8 

This subroutine is called by the subroutine FASEMB to compute the ele- 
ment matrix given by 

QB(I,J) = (VN,') .K.(VNje)dR , d 
where F is the soil property function. Subroutine FQ8 also calculates the 
element load vector given by 

where q is the sourcelsink. 

Subroutine BASE 

This subroutine is called by subroutines FQ8DV and FQ8 to evaluate the 
value of the base function at a Gaussian point. The computation is 
straightforward. 

Subroutine FBC 

This subroutine incorporates Dirichlet, Cauchy, Neumam, and variable 
boundary conditions. For a Dirichlet boundary condition, an identity 
algebraic equation is generated for each Dirichlet nodal point. Any other 
equation having this nodal variable is modified accordingly to simplify the 
computation. For a Cauchy surface, the integration of the surface source is 
obtained by calling the subroutine Q4S, and the result is added to the load 
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vector. For a Neumann surface, the integrations of both the gradient and 
gravity fluxes are obtained by calling the subroutine Q4S. These fluxes are 
added to the load vector. The subroutine BC also implements the variable 
boundary conditions. First, it checks all infiltration-evapotranspiration- 
seepage points, identifying any of them that are Dirichlet points. If there are 
Dirichlet points, the method of incorporating Dirichlet boundary conditions 
mentioned above is used. If a given point is not the Dirichlet point, the point 
is bypassed. Second, it checks all rainfall-evaporation-seepage points again to 
see if any of them is a Cauchy point. If it is a Cauchy point, then the 
computed flux by infiltration or potential evapotranspiration is added to the 
load vector. If a given point is not a Cauchy point, it is bypassed. Because 
the infiltration-evaporation-seepage points are either Dirichlet or Cauchy 
points, all points are taken care of in this manner. 

Subroutine 04s 

This subroutine is called by the subroutines FBC and FSFLOW to compute 
the surface node flux of the type 

where q is either the Cauchy flux, Neumann flux, or gravity flux. 

Subroutine BLKITR 

This subroutine is called by the subroutines HYDRO and CHEMI to solve 
the matrix equation with block iteration methods. For each subregion, a block 
matrix equation is constructed based on the global matrix equation and two 
pointer arrays GNPLR and LNOJCN (see subroutine PAGEN), and the result- 
ing block matrix equation is solved with the direct band matrix solver by call- 
ing subroutine SOLVE. This is done for all subregions for each iteration until 
a convergent solution is obtained. This subroutine and the subroutine 
SOLVE, to be described in the next paragraph, are needed only for the code 
BLI. 

Subroutine SOLVE 

This subroutine is called by the subroutine BLKITR to solve for the matrix 
equation of the type 
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where [C] is the coefficient matrix and {x) and {y) are two vectors. {x) is 
the unknown to be solved, and {y) is the known load vector. The computer 
returns the solution {y) and stores it in {y). The computation is a standard 
banded Gaussian direct elimination procedure. 

Subroutine PPCG 

This subroutine is called by the subroutines HYDRO and CHEMI, if 
necessary, to solve the linearized matrix equation with the preconditioned 
conjugate gradient method using the polynomial as a preconditioner. It calls 
to POLYP to invert the preconditioner. 

Subroutine POLYP 

This subroutine is called by the subroutine PPCG to solve for a modified 
residual that will be used in the preconditioned conjugate gradient algorithm. 

Subroutine ILUCG 

This subroutine is called by the subroutines HYDRO and CHEMI, if 
necessary, to solve the linearized matrix equation with the preconditioned 
conjugate gradient method using the incomplete Cholesky decomposition as a 
preconditioner. It calls to LLTINV to invert the preconditioner. 

Subroutine LLTINV 

This subroutine is called by the subroutine ILUCG to solve for a modified 
residual that will be used in the preconditioned conjugate gradient algorithm. 

Subroutine FPRINT 

This subroutine is used to line-print the flow variables. These include the 
fluxes through variable boundary surfaces, the pressure head, total head, 
moisture content, and Darcy's velocity components. 

Subroutine FSTORE 

This subroutine is used to store the flow variables on Logical Unit 1. It is 
intended for use for plotting. The information stored i ,:ludes region 
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geometry, subregion data, and hydrological variables such as pressure head, 
total head, moisture content, and Darcy's velocity components. 

Subroutine FSFLOW 

This subroutine is used to compute the fluxes through various types of 
boundaries and the increasing rate of water content in the region of interest. 
The function of FRATE(7) is to store the flux through the whole boundary 
enclosing the region of interest. It is given by 

where B is the global boundary of the region of interest; V,, V,, and V, are 
Darcy's velocity components; and n,, q,, and n, are the directional cosines of 
the outward unit vector normal to the boundary B. FRATE(1) through 
FRATE(5) store the flux through Dirichlet boundary B,, Cauchy boundary 
Bc, Neumann boundary B,, the seepagelevapotranspiration boundary Bs, and 
infiltration boundary B,, respectively, and are given by 
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FRATE(6), which is related to the numerical loss, is given by 

FRATE(8) and FRATE(9) are used to store the sourcelsink and increased 
rate of water within the media, respectively: 

and 

If there is no numerical error in the computation, the following equation 
should be satisfied: 

and FRATE(6) should be equal to zero. Equation 2.19 simply states that the 
negative rate of water going out from the region through the entire boundary 
and due to a sourcelsink is equal to the rate of water accumulated in the 
region. 

Subroutine Q8TH 

This subroutine is used to compute the contribution of the increasing rate 
of the water content from an element e 

The computation of the above integration is straightforward. 
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Subroutine CHEMI 

The subroutine CHEMI controls the entire sequence of transport computa- 
tions. CHEMI calls subroutines ESSFCT, WSSFCT, DBVFCT, VBVFCT, 
CBVFCT, and NBVFCT to obtain sources/sinks and boundary values; sub- 
routine AFABTA to obtain upstream weighting factor based on velocity and 
dispersivity; subroutine FLUX to compute material flux; subroutine TASEMB 
to assemble the element matrices over all elements; subroutine TBC to imple- 
ment the boundary conditions; subroutine BLKITR, POINTI, PPCG, or 
ILUCG to solve the resulting matrix equations; subroutine TSFLOW to 
calculate flux through all types of boundaries and water accumulated in the 
media; subroutine TPRINT to print out the results; subroutine TSTORE to 
store the results for plotting; subroutine THNODE to compute the value of 
moisture content plus bulk density times distribution coefficient in the case of 
linear isotherm, or the moisture content in the case of nonlinear isotherm at all 
nodes; subroutine BTGN to compute the Lagrangian concentrations at all 
node, and subroutine ADVBC to implement boundary conditions in the 
Lagrangian step. 

Subroutine AFABTA 

This subroutine calculates the values of upstream weighting factors along 
12 sides of all elements. 

Subroutine FLUX 

This subroutine calls TQ8DV to evaluate the element matrices and the 
derivatives of concentrations. It then sums over all element matrices to form 
a matrix equation governing the flux components at all nodal points. To save 
computational time, the matrix is diagonalized by lumping. The flux 
components due to dispersion can thus be solved point by point. The flux due 
to the velocity is then added to the computed flux due to dispersion. The 
computed total flux field is then returned to GM3D through the argument. 

Subroutine DISPC 

Subroutine DISPC calculates the dispersion coefficient associated with each 
Gaussian point of an element. 

Subroutine TQ8DV 

Subroutine TQ8DV is called by the subroutine FLUX to compute the 
element matrices given by 
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where N,' and 4.' are the basis functions for nodal point i and j of element 
e, respectively. Subroutine Q8DV also evaluates the element load vector: 

where C, is the concentration at nodal point j, i is the unit vector along the x- 
direction, j is the unit vector along the y-coordinate, k is the unit vector along 
the z-coordinate, 8 is the moisture content, and D is the dispersion coefficient 
tensor. 

Subroutine TASEMB 

This subroutine calls TQ8 to evaluate the element matrices. It then sums 
over all element matrices to form a global matrix equation governing the con- 
centration distribution at all nodes. 

Subroutine TQ8 

This subroutine is called by the subroutine TASEMB to compute the ele- 
ment matrix given by 
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QB(I,J) = ( V N )  . BD . (V4')dR , 

Re 

where dS/dC should be evaluated at C, the dissolved concentration at previous 
iteration. Subroutines Q8 also calculate the element load vector given by: 

where C, and S, are the dissolved and adsorbed concentrations at previous 
iteration, respectively. 

Subroutine SHAPE 

This subroutine is called by subroutines TQ8DV and TQ8 to evaluate the 
value of the base and weighting functions and their derivatives at a Gaussian 
point. The computation is straightforward. 

Subroutine TBC 

This subroutine incorporates Dirichlet, variable boundary, Cauchy, and 
Neumann boundary conditions. For a Dirichlet boundary condition, an 
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identity algebraic equation is generated for each Dirichlet nodal point. Any 
other equation having this nodal variable is modified accordingly to simplify 
the computation. For a variable surface, the integration of the normal velocity 
times the incoming concentration is added to the load vector and the 
integration of normal velocity is added to the matrix. For the Cauchy bound- 
aries, the integration of Cauchy flux is added to the load vector and the inte- 
gration of normal velocity is added to the matrix. For the Neumann 
boundary, the integration of gradient flux is added to the load vector. 

Subroutine Q4CNVB 

This subroutine is called by the subroutines TBC to compute the surface 
node flux of the type 

where q is either the Cauchy flux, Neumann flux, or n VC,. It also com- 
putes the boundary element matrices 

Subroutine TPRINT 

This subroutine is used to line-print the simulation results. These include 
the fluxes through variable boundary surfaces, the concentration, and 
vertically integrated material flux components. 

Subroutine TSTORE 

This subroutine is used to store the simulation results on Logical Unit 12. 
It is intended for plotting purpose. The information stored includes regio:. 
geometry, concentrations, and vertically integrated material flux components 
at all nodes for any desired time-step. 
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Subroutine TSFLOW 

This subroutine is used to compute the flux rates through various types of 
boundaries and the increasing rate of material in the region of interest. 
FRATE(7) is to store the flux through the whole boundary 

where B is the global boundary of the region of interest; F,, and F, are the 
vertically integrated flux components; and n,, and n, are the directional 
cosines of the outward unit vector normal to the boundary B. FRATE(1) 
stores the flux rates through Dirichlet boundary B,. FRATE(2) and 
FRATE(3) store the flux rate through Cauchy and Neumann boundaries, 
respectively. FRATE(4) and FRATE(5) store incoming flux and outgoing 
flux rates, respectively, through the variable boundaries Bv-and Bv+, as given 
by 

where Bv- and Bv+ are that part of the variable boundary where the fluxes are 
directed into the region and out from the region, respectively. The integration 
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of Equations 2.16 through 2.20 is carried out by the subroutine Q4BB. 

FRATE(6) stores the flux rate through unspecified boundaries as 

5 

FRA E ( 6 )  = FRA ~ ( 7 )  - C FRA TE(I) 
I = l  

FRATE(8) and FRATE(9) store the accumulated rate in dissolved and 
adsorbed phases, respectively, as given by 

FRATE(10) stores the rate loss due to decay and FRATE(l1) through 
FRATE(13) are set to zero as given by 

FRATE(14) is used to store the source/sink rate as 

If there is no numerical error in the computation, th, .bll~wing equation 
should be satisfied: 
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and FRATE(6) should be equal to zero. 

Subroutine Q4BB 

This subroutine is called by the subroutine SFLOW to perform surface 
integration of the following type 

where F is the normal flux. 

Subroutine Q8R 

This subroutine is used to compute the contributions to FRATE(8), 
FRATE(9), FRATE(l), and FRATE(14): 

The computation of the above integration is straightforward. 
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Subroutine THNODE 

This subroutine is called by CHEMI to compute the ( I 3  + p,dSldC) for the 
linear isotherm model or I3 for the Freundlich and Langmuir nonlinear 
isotherm models. 

Subroutine ADVBC 

This subroutine is called by CHEMI to implement the boundary conditions. 
For Dirichlet boundary, the Lagrangian concentration is specified. For 
variable boundaries, if the flow is directed out of the region, the fictitious 
particle associated with the boundary node must come from the interior nodes. 
Hence the Lagrangian concentration for the boundary node has already 
computed from subroutine BTGN and the implementation for such a boundary 
segment is bypassed. Thus, care should be taken to ensure that the subroutine 
BTCN is called before the subroutine ADVBC. For variable boundaries, if 
the flow is directed into the region, the concentration of incoming fluid is 
specified. An intermediate concentration C*' is calculated according to 

where Ci** is the concentration due to the boundary source at the boundary 
node i, V, is the normal vertically integrated Darcy's velocity, and C, is the 
concentration of incoming fluid. 

Cauchy boundary conditions are normally applied to the boundary where 
flow is directed into the region, where the material flux of incoming fluid is 
specified. The intermediate concentration is thus calculated according to 

where C," is the concentration due to Cauchy fluxes at the boundary node i, 
V, is the normal Darcy's velocity, and q, is the Cauchy flux of the incoming 
fluid. 

The Lagrangian concentration is obtained by using the value Ci8* and C: 
(the concentration at previous time-step) as follows: 
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I ~,%qc,* * dB + N,pbK&.C,"dB 
cl* = B B for linear isotherm (2.49a) 

C,' = C, * * for nonlinear isotherm 

Subroutine BTGN 

This subroutine is called by CHEMI to control the process of backward 
particle tracking starting from global nodes. It is designed to get the 
Lagrangian concentrations of all the particles sitting on the global nodes at the 
current time-step. In the subroutine, each particle is tracked one element by 
one element until either the tracking time is completely consumed or the 
particle encounters a specified boundary side. During the particle tracking, 
this subroutine calls (a) TRACKlH to track a particle in the element being 
considered if that particle is standing on a global node of the element, and 
(b) TRACK2H to track a particle if that particle is not on any nodes of the 
element. In order to make the particle tracking complete and remedy the 
given velocity field error on the unspecified boundaries, this subroutine calls 
ALGBDY to continue tracking particles along the unspecified boundaries. At 
the end of each particle tracking, this subroutine calls (a) LOCPLN if the 
target point is on an unspecified boundary side, and (b) BASE or XSI3D if the 
target point is in a determined element to calculate base functions such that the 
Lagrangian concentration can be computed by interpolation with those base 
function values. 

Subroutine TRACK1 H 

This subroutine is called by BTGN to compute the particle tracking in a 
specified element when the source point coincides with a global node of the 
element. This subroutine calls PLANE to determine (a) whether the particle 
would move backwards into the element or not, and (b) which side of the 
element the particle would head onto if the particle does move backwards into 
this element. After determining which side the particle is going to move onto, 
this subroutine calls LOCQ8 to compute the exact location of the target point 
on the side. For accuracy, using the average velocity of both the source point 
and the target point to locate the target point is firstly considered in the sub- 
routine. However, if this average velocity approach is not able to deal with 
very complex velocity fields, the single velocity of the source point is used to 
determine the location of the target point. 
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Subroutine TRACK2H 

This subroutine is called by BTGN to compute the particle tracking in a 
specified element when the source point does not coincide with a global node 
of the element. This subroutine calls PLANE to determine (a) whether the 
particle would move backwards into the element or not, and (b) which side of 
the element the particle would head onto if the particle does move backwards 
into this element. After determining which side the particle is going to move 
onto, this subroutine calls LOCQ8 to compute the exact location of the target 
point on the side. For accuracy, using the average velocity of both the source 
point and the target point to locate the target point is firstly considered in the 
subroutine. However, if this average velocity approach is not able to deal 
with very complex velocity fields, the single velocity of the source point is 
used to determine the location of the target point. 

Subroutine PLANE 

This subroutine is called by both TRACKlH and TRACK2H to determine 
which one of the two sides, separated by a specified plane, the particle would 
move into. All the computations are made according to the average velocity 
approach and the single velocity approach, when the index parameter IJUDGE 
is 1 and 2, respectively. 

Subroutine LOCQ8 

This subroutine is called by both TRACKlH and TRACK2H to locate the 
target point of a particle tracking in a specified element. All the computations 
are made according to the average velocity approach and the single velocity 
approach, when the index parameter IJUDGE is 1 and 2, respectively. When 
the average velocity approach is considered, the Newton-Raphson method is 
used to solve a set of two simultaneous nonlinear algebraic equations such that 
the local coordinates of the target point on the predetermined element side can 
be determined. With these local coordinates, one is able to calculate all the 
information at the target point. On the other hand, when the single velocity 
approach is considered, the location of the target point can be easily deter- 
mined based on both the velocity of the source point and the geometrical rela- 
tionship between the source point and the predetermined element side. 

Subroutine ALGBDY 

This subroutine is called by BTGN to control the process of backward 
particle tracking along the unspecified boundaries. In the subroutine, the 
particle tracking is executed one boundary side by one bc sndary side based on 
the nodal velocity component along the side being consiarred. The tracking 
will not be stopped until either the tracking time is completely consumed or 
the particle encounters a specified boundary side. This subroutine calls 
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BNDRY to track a particle along a predetermined boundary side. For 
accuracy, using the average velocity of both the source point and the target 
point to locate the target point is firstly considered in the subroutine. How- 
ever, if this average velocity approach is not able to deal with very complex 
velocity fields, the single velocity of the source point is used to determine the 
location of the target point. 

Subroutine BNDRY 

This subroutine is called by ALGBDY to locate the target point of a 
particle tracking along a specified boundary side. All the computations are 
made according to the average velocity approach and the single velocity 
approach, when the index parameter IJUDGE is I and 2, respectively. For 
both approaches, the location of the target point can be analytically deter- 
mined. However, when the velocity field is very complex, there might be no 
solution with the average approach. Thus, IJUDGE is originally set to 1 and 
is changed to 2 if the average approach fails. This control is executed in 
ALGBDY. 

Subroutine LOCPLN 

This subroutine is called by BTGN to determine the base function values 
associated with a specified point on a predetermined plane. Firstly, it trans- 
forms all the point coordinates, including that of the point and those of the 
plane nodes, from three-dimensional space to two-dimensional space. Sec- 
ondly, it calls BASE2D to compute the base function values based on those 
transformed two-dimensional coordinates. 

Subroutine BASE2D 

This subroutine is called by LOCPLN to compute the base function values 
associated with a specified point based on the given two-dimensional global 
coordinates. For the cases of quadrilateral elements, it calls XSI2D to calcu- 
late the local coordinates, and computes base functions with these determined 
local coordinates. For the cases of triangular elements, the base functions can 
be analytically determined based on the given global coordinates. 

Subroutine XS12D 

This subroutine is called by BASE2D to compute the local coordinate of a 
quadrilateral element given the global coordinate within that element. 
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Subroutine BASE 

This subroutine is called by BTGN to compute the base functions associ- 
ated with a specified point based on the given global coordinates. It calls 
XSI3D to compute the local coordinates associated with the point such that the 
base function values can be easily calculated. 

Subroutine XS13D 

This subroutine is called by BASE to compute the local coordinate of a 
hexahedral element given the global coordinate within that element. 
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3 Adaptation of 3DSALT to 
Site-Specific Applications 

The following describes how one should apply the 3DSALT code for site- 
specific applications and how the data file should be prepared. 

Parameter Specifications 

For each site-specific problem, the users only need to specify the size of 
the problem by assigning 58 maximum control-integers with PARAMETER 
STATEMENT in the MAIN program. The list and definitions of the max- 
imum control-integers required for both flow and transport simulations are 
given below: 

a. Maximum control-integers for the spatial domain 

MAXNPK = maximum number of nodes 
MAXELK = maximum number of elements 
MXBESK = maximum number of boundary-element surfaces 
MXBNPK = maximum number of boundary nodal points 
MXJBDK = maximum number of nonzero eiements in any row for 

nodewise connectivity 
MXKBDK = maximum number of nonzero elements in any row for 

elementwise connectivity 

b. Maximum control-integers for the time domain 

MXNTIK = maximum number of time-steps 
MXDTCK = maximum number of DELT changes 

Chapter 3 Adaptation of 3DSALT to Site-Specific Applications 



c. Maximum control-integers for subregions 

LTMXNK = maximum number of total nodal points in any 
subregion, including interior nodes, global boundary 
nodes, and interboundary nodes. LTMXNK = 1 if the 
block iteration is not used. 

LMXNPK = maximum number of nodal points in any subregion, 
including interior nodes and global boundary nodes. 
LMXNPK = 1 if the block iteration is not used. 

LMXBWK = maximum number of the bandwidth in any subregion. 
LMXBWK = 1 if the block iteration is not used. 

MXRGNK = maximum number of subregions. MXRGNK = 1 if the 
block iteration is not used. 

d. Maximum control-integers for material and soil properties 

MXMATK = maximum number of material types 
MXSPMK = maximum number of soil parameters per material to 

describe soil characteristic curves 
MXMPMK= maximum number of material properties per material 
MXRMPK = maximum number of coefficients of the viscosity and 

density functions. 

The maximum control-integers for flow simulations and their definitions 
are given as the following: 

a. Maximum control-integers for source/sinks, flow 

MXSELh = maximum number of source elements 
MXSPRh = maximum number of source profiles 
MXSDPh = maximum number of data points on each element 

sourcelsink profile 
MXWNPh = maximum number of well nodal points 
MXWPRh = maximum number of well sourcelsink profiles 
MXWDPh = maximum number of data points on each well 

sourcelsink profile 

b. Maximum control-integers for cauchy boundary conditions, flow 

MXCNPh = maximum number of Cauchy nodal points 
MXCESh = maximum number of Cauchy element surfaces 
MXCPRh = maximum number of Cauchy-flux profiles 
MXCDPh = maximum number of data points on each Cauchy-flux 

profile 
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c. Maximum control-integers for Neumann boundary conditions, jlow 

MXNNPh = maximum number of Neumann nodal points 
MXNESh = maximum number of Neumann element surfaces 
MXNPRh = maximum number of Neumann-flux profiles 
MXNDPh = maximum number of data points on each Neumann-flux 

profile 

d. Maximum control-integers for rainfall-seepage boundary conditions, 
Pow 

MXVNPh = maximum number of variable nodal points 
MXVESh = maximum number of variable element surfaces 
MXVPRh = maximum number of rainfall profiles 
MXVDPh = maximum number of data point on each rainfall profile 

e. Maximum control-integers for Dirichlet boundary conditions, jlow 

MXDNPh = maximum number of Dirichlet nodal points 
MXDPRh = maximum number of Dirichlet total head profiles 
MXDDPh = maximum number of data points on each Dirichlet 

profile 

The maximum control-integers for transport simulations and their defini- 
tions are given as the following: 

a. Maximum control-integers for source/sinks, transport 

MXSELc = maximum number of source elements 
MXSPRc = maximum number of source profiles 
MXSDPc = maximum number of data points on each element 

source/sink profile 
MXWNPc = maximum number of well nodal points 
MXWPRc = maximum number of well sourcelsink profiles 
MXWDPc = maximum number of data points on each well 

source/sink profile 

b. Maximum control-integers for Cauchy boundary conditions, transport 

MXCNPc = maximum number of Cauchy nodal points 
MXCESc = maximum number of Cauchy element surfaces 
MXCPRc = maximum number of Cauchy-flux profiles 
MXCDPc = maximum number of data points on each Cauchy-flux 

profile 
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c. Maximum control-integers for Neumann boundary conditions, 
transport 

MXNNPc = maximum number of Neumann nodal points 
MXNESc = maximum number of Neumann element surfaces 
MXNPRc = maximum number of Neumann-flux profiles 
MXNDPc = maximum number of data points on each Neumann-flux 

profile 

d. Maximum control-integers for flowin-jlowout boundary conditions, 
transport 

MXVNPc = maximum number of variable nodal points 
MXVESc = maximum number of variable element surfaces 
MXVPRc = maximum number of rainfall profiles 
MXVDPc = maximum number of data point on each rainfall profile 

e. Maximum control-integers for Dirichlet boundary conditions, transport 

MXDNPc = maximum number of Dirichlet nodal points 
MXDPRc = maximum number of Dirichlet total head profiles 
MXDDPc = maximum number of data points on each Dirichlet 

profile 

For flow simulations only, we demonstrate how to specify the above 
maximum control-integers with PARAMETER STATEMENT in the MAIN in 
the following by an example. 

Let us assume that a region of interest is discretized by 30 x 20 x 10 
nodes and 29 x 19 x 9 elements. In other words, we are discretizing the 
region with 30 nodes along the longitudinal or x-direction, 20 nodes along the 
lateral or y-direction, and 10 nodes along tke vertical or z-direction. Since we 
have a total of 30 x 20 x 10 = 6,000 nodes, the r~laximum number of nodes 
is MAXNPK = 6000. The total number of elements is 29 x 19 x 9 = 

4,959, i.e, MAXELK = 4959. For this simple discretization problem, the 
maximum connecting number to any of the 6,000 nodes in the region of 
interest is 27, i.e., MXJBDK = 27, and the maximum connecting number of 
elements to any of the 6,000 nodes is 8, i.e., MXKBDK = 8. There will be 
29 x 19 = 551 element surfaces each on the bottom and top faces of the 
region, 29 x 9 = 261 element surfaces each on the front and back faces of 
the region, and 19 x 9 = 171 element surfaces each on the left and right 
faces of the region. Thus, there will be a total of 1,966 element surfac , 
i.e., MXBESK = 1966. Similarly, we can compute the surface-boundary 
nodes to be 1,968, i.e., MXBNPK = 1968. 
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In order to specify maximum control-integers related to subregion data, we 
have to know how the region of interest is subdivided into subregions. Let us 
assume we have subdivided the region of interest into 20 subregions, and each 
subregion has 30 x 10 nodes. It is seen, in fact, we are taking a vertical 
slice as a subregion. For this subregionalization, we have MXRGNK = 20. 
Each subregion has 30 x 10 = 300 nodes, resulting in LMXNPK = 300. 
It is also seen that there will be 600 interboundary nodes, 300 nodes each on 
the two neighboring slices of a subregion. Thus, we have LTMXNK = 900. 
For each subregion, the maximum bandwidth can be computed as LMXBWK 
= 23 if the nodes are labelled along the z-directions consecutively. 

We will assume that there will be a maximum of 11 elements that have the 
distributed sources/sinks (i.e., MXSELh = 11) and a maximum of 10 nodal 
points that can be considered as well sourceslsinks (i.e., MXWNPh = 10). 
We will also assume that there will be three different distributed sourcelsink 
profiles and five distinct point sourcelsink profiles. Then we will have 
MXSPRh = 3 and MXWPRh = 5. Let us further assume that four data 
points are needed to describe the distributed sourcelsink profiles as a function 
of time and that eight data points are required to described point sourcelsink 
profiles (i.e., MXSDPh = 4 and MXWDPh = 8). 

To specify maximum control-integers for boundary conditions, let us 
assume that the top face is a variable boundary (i.e., on the air-soil interface, 
either ponding, infiltration, or evapotranspiration may take place). On the 
left face, fluxes from the adjacent aquifer are known. On the right face, the 
total head is assumed known. On the bottom face, natural drainage is 
assumed to occur (i.e., the gradient of the pressure head can be assumed 
zero). 

There are 20 X 10 = 200 nodes on the left face and 19 x 9 = 171 
element surfaces; thus MXCNPh = 200 and MXCESh = 171. It is further 
assumed that there two different fluxes going into the region through the left 
face and that each flux can be described by four data points as a function of 
time (i.e., MXCPRh = 2 and MXCDPh = 4). On the bottom surface, there 
are 30 X 20 = 600 nodes and 29 x 19 = 551 surface elements. Since the 
gradient of pressure head on the bottom scrface is zero, there is only one 
Neumann flux profile; and two data points, one at zero time and the other at 
infinite time, are sufficient to describe the constant value of zero. Hence, we 
have MXNNPh = 600, MXNESh = 55 1, MXNPRh = 1, and MXNDPh = 
2. On the top face, there will be 30 X 20 = 600 nodes and 29 X 19 = 551 - 
surface elements. Let us assume that there are three different rainfall 
intensities that might fall on the air-soil interface, and that each rainfall 
intensity is a function of time and can be described by 24 data points. With 
these descriptions, we have MXVNPh = 600, MXVESh = 551, MXVPRh = 
3, and MXVDPh = 24. On the right face, there are 20 X 10 = 200 nodes. - 
Let us assume that here are twenty different values of the total head, one each 
on a vertical line of the right face. We further assume that each of these 
twenty total heads can be described by eight data points as a function of time. 
We then have MXDNPh = 200, MXDPRh = 20, and MXDDPh = 8. 
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In this example, we have six material properties (six saturated hydraulic 
conductivity components) per material. We will assume that the whole region 
of interest is made of three different kinds of materials. The characteristic 
curves of each material are assumed to be described by four parameters. We 
then have MXMATK = 3, MXMPMK = 6, and MXSPMK = 4. If we 
assume that we will make a 500 time-step simulation and we will reinitiate the 
change on the time-step size for 20 times during our simulation, then we have 
MXNTIK = 500 and MXDTCK = 20. 

From the above discussion, the following PARAMETER STATEMENTS 
can be used to specify the maximum control-integers in the MAIN for the 
problem at hand: 

PARAMETER(MAXNPK = 6000,MAXELK =4959,MXBNPK = 1968, 
MXBESK = 1966) 

PARAMETER(MXJBDK =27,MXKBDK= 8,MXNTIK = 500,MXDTCK = 

20) 
PARAMETER(LTMXNK = 900,LMXNPK = 300,LMXBWK= 23, 

MXRGNK = 20) 
PARAMETER(MXMATK =4,MXSPMK=4,MXMPMK 6, 

MXRMPK = 8) 
PARAMETER(MXSELh= 11 .MXSPRh=3,MXSDPh=4,MXWNPh= 10, 

MXWPRh = 5 ,MXWDPh = 8) 
PARAMETER(MXCNPh =200,MXCESh = 17 1 ,MXCPRh =2, 

MXCDPh = 4) 
PARAMETER(MXNNPh=600,MXNESh = 55 1 ,MXNPRh = 1, 

MXNDPh = 2) 
PARAMETER(MXVNPh = 600,MXVESh = 55 1 ,MXVPRh = 3, 

MXVDPh = 24) 
PARAMETER(MXDNPh =200,MXDPRh= 20,MXDDPh= 8) 
PARAMETER(MXSELc= 1 ,MXSPRc= l,MXSDPc=2,MXWNPc= 1, 

MXWPRc= 1 ,MXWDPc=2) 
PARAMETER(MXCNPc= 1 ,MXCESc = 1 ,MXCPRc = 1 ,MXCDPc =2) 
PARAMETER(MXNNPc = 1 ,MXNESc = 1 ,MXNPRc = 1 ,MXNDPc = 2) 
PARAMETER(MXVNPc = 1 ,MXVESc = 1 ,MXVPRc = 1 ,MXVDPc =2) 
PARAMF-'-R(MXDNPc = 1 ,MXDPRc = 1 ,MXDDPc = 2) 

In the following, for transport simulations only, we demonstrate how to 
specify the maximum control-integers with PARAMETER statements in the 
MAIN with an example. 

Let us assume that a region of interest is discretized by 30 x 20 x 10 
nodes and 29 x 19 x 9 elements. In other words, we are discretizing the 
region with 30 nodes along the longitudinal or x-direction, 20 nodes along the 
lateral or y-direction, and 10 nodes along the vertical or z-direction. Since we 
have a total of 30 x 20 x 10 = 6,000 nodes, the maximum number of nodes 
is MAXNPK = 6000. The total number of elements is 29 X 19 X 9 = 
4,959, i.e, MAXELK = 4959. For this simple discretization problem, the 
maximum number of connecting nodes to any of the 6,000 nodes in the region 
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of interest is 27, i.e., MXJBDK = 27. The maximum number of connecting 
elements to any nodes is 8, i.e., MXKBDK = 8. There will be 29 X 19 = 
551 element surfaces each on the bottom and top faces of the region, 29 X 9 
= 261 element-surfaces each on the front and back faces of the region, and 19 
x 9 = 171 element-surfaces each on the left and right faces of the region. 
Thus, there will be a total of 1966 element-surfaces, i.e., MXBESK = 1966. 
Similarly, we can compute the surface-boundary nodes to be 1968, i.e., 
MXBNPK = 1968. 

In order to specify maximum control-integers related to subregion data, we 
have to know how the region of interest is subdivided into subregions. Let us 
assume we have subdivided the region of interest into 20 subregions; each 
subregion has 30 x 10 nodes. It is seen, in fact, we are taking a vertical 
slice as a subregion. For this subregionalization, we have MXRGNK = 20. 
Each subregion has 30 x 10 = 300 nodes, resulting in LMXNPK = 300. It 
is also seen that there will be 600 interboundary nodes, 300 nodes each on the 
two neighboring slices of a subregion. Thus, we have LTMXNK = 900. 
For each subregion, the maximum bandwidth can be computed as LMXBWK 
= 23 if the nodes are labelled along the z-directions consecutively. 

We will assume that there will be a maximum of 11 elements that have the 
distributed sourceslsinks (i.e., MXSELc = 11) and a maximum of 10 nodal 
points that can be considered as well sourceslsinks (i.e. MXWNPc = 10). 
We will also assume that there will be three different distributed source-sink 
profiles and five distinct point sourcelsink profiles. Then we will have 
MXSPRc = 3 and MXWPRc = 5. Let us further assume that four data 
points are needed to describe the distributed sourcelsink profiles as a function 
of time and that eight data points are required to described point sourcelsink 
profiles (i.e., MXSDPc = 4 and MXWDPc = 8). 

To specify maximum control-integers for boundary conditions, let us 
assume that the top face is a variable boundary (i.e., on the air-soil interface, 
either Cauchy condition with known incoming concentration or Neumann 
condition with zero gradient of concentration). On the left face, fluxes from 
the adjacent aquifer are known. On the right face, the concentration is 
assumed known. On the bottom face, Neumann c~ndition is assumed to occur 
with zero concentration gradient. 

There are 20 x 10 = 200 nodes on tht. left face and 19 x 9 = 171 
element surfaces; thus MXCNPc = 200 ar.d MXCESc = 171. It is further 
assumed that there two different fluxes going into the region through the left 
face and that each flux can be described by four data points as a function of 
time (i.e., MXCPRc = 2 and MXCDPc = 4). On the bottom surface, there 
are 30 X 20 = 600 nodes and 29 X 19 = 551 surface elements. Since the 
gradient of concentration on the bottom surface is zero, there is only one 
Neumann flux profile; and two data points, one at zero time and the other at 
infinite time, are sufficient to describe the constant value of zero. Hence, we 
have MXNNPc = 600, MXNESc = 551, MXNPRc = 1, and MXNDPc = 
2. On the top face, there will be 30 x 20 = 600 nodes and 29 x 19 = 551 - 
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surface elements. Let us assume that there are three different concentration 
profiles that might be imposed on the air-soil interface, and that each 
concentration profile is a function of time and can be described by 24 data 
points. With these descriptions, we have MXVNPc = 600, MXVESc = 551, 
MXVPRc = 3, and MXVDPc = 24. On the right face, there are 20 x 10 = 
200 nodes. Let us assume that here are twenty different values of 
concentration, one each on a vertical line of the right face. We further 
assume that each of these twenty concentrations can be described by eight data 
points as a function of time. We then have MXDNPc = 200, MXDPRc = 
20, and MXDDPc = 8. - 

In this example, we have eight material properties per material. We will 
assume that the whole region of interest is composed of three different kinds 
of materials. We then have MXMATK = 3 and MXMPMK = 6. If we 
assume that we will make a 500 time-step simulation and we will reinitiate the 
change on the time-step size for 20 times during our simulation, then we have 
MXNTIK = 500 and MXDTCK = 20. 

From the above discussion, the following PARAMETER Statements can be 
used to specify the maximum control-integers in the MAIN for the problem at 
hand: 

PARAMETER(MAXNPK= 6000,MAXELK =4959,MXBNPK = 1968, 
MXBESK = 1966) 

PARAMETER(MXJBDK = 27,MXKBDK = 8,MXNTIK = 500, 
MXDTCK=20) 

PARAMETER(LTMXNK = 900,LMXNPK = 300,LMXBWK =23, 
MXRGNK = 20) 

PARAMETER(MXMATK =4,MXSPMK = 6,MXMPMK =6, 
MXRMPK = 8) 

PARAMETER(MXSELc= 11 ,hi .SPRc = 3,MXSDPc=4,MXWNPc= 10, 
MXWPRc=5, MXWDPc= 8) 

PARAMETER(MXCNPc = 200,MXCESc = 17 1 ,MXCPRc = 2,MXCDPc = 4) 
PARAMETER(MXNNPc = 600,MXNESc = 55 1 ,MXNPRc = 1, 

MXNDPc =2) 
PARAMETER(MXVNPc = 600,MXVESc = 55 1 ,MXVPRc = 3, 

MXVDPc = 24) 
PARAMETER(MXDNPc = 200,MXDPRc = 20,MXDDPc = 8) 
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Soil Property Function Specifications 

Analytical functions are used to describe the relationships of water content, 
water capacity, and relative hydraulic conductivity with pressure head. There- 
fore, the user must supply three functions to compute the water content, water 
capacity, and relative hydraulic conductivity based on the current value of 
pressure head. The parameters needed to specify the functional form are read 
and stored in SPP. One example is shown in the subroutine SPROP in the 
source code. In this example, the water content, water capacity, and relative 
hydraulic conductivity are given by van Senechten (1980): 

in which 

and 

8 = O r +  0s - e r  (3.1) 
[l + (ah)"]"' 

To further demonstrate how we should modify the subroutine SPROP in 
Appendix A to accommodate the material property functions that are different 
from those given by Equations 3.4 and 3.5, let us assume that the following 
Fermi types of' functions are used to represent the unsaturated hydraulic 
properties (Yeh 1987): 

e = Or + (eS - er>l{l + exp[-a(h - h,)]) 
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8dOldh = a(Os - Or) exp[-a(h - h,)]l{l 

+ exp[-a(h - h,)1I2 , 

and 

where O,, Or, a, and h, are the parameters for computing the water content and 
water capacity; and f l ,  E ,  and h, are the parameters for computing the relative 
hydraulic conductivity. Lines between SPRO 845 and SPRO 11 10 in the 
source code must be changed, for this example, to the following form for 
computing the moisture content and water capacity 

WCR=SPP(l ,MTYP, 1) 
WCS =SPP(2,MTYP, 1) 
ALPHA=SPP(3,MTYP, 1) 
HTHETA = SPP(4,MTYP, 1) 
EPS = SPP(1 ,MTYP,2) 
BETA= SPP(2,MTYP,2) 
HSUBK = SPP(3 ,MTYP,2) 
DO 390 KG= 1,8 
NP = IE(M,KG) 
HNP = HKG(KG) 
HNP=-HNP 

C 
C ------- SATURATED CONDITION 
C 

IF(HNP.LE.O.0) THEN 
TH(KG,M) = WCS 
DTH(KG,M) =O.ODO 
USKFCT = 1 .OD0 

C 
ELSE 

C 
C ------ UNSATURATED CASE 
C 

EXPAH = DEXP(-ALPHA*(HNP-HTHETA)) 
TH(KG,M)=WCR+ (WCS-WCR)I(l .ODO+ EXPAH) 
DTH(KG,M) = ALPHA*(WCS-WCR)*EXPAH/(l .OD0 + EXPAH)**2 
AKR1,OG = EPS/(l .OD0 + DEXP(-BETA*(HNP-HSUBK))) - EPS 
USKFCT = lO.ODO**AKRLOG 

ENDIF 
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Input and Output Devices 

Five logical units are needed to execute 3DSALT. Units 15 and 16 are 
standard card input and line printer devices, respectively. Unit 1 I must be 
specified to store the flow simulation results, which can be used for plotting 
purposes. Unit 12 must be specified to store the transport simulation results, 
which can be used for plotting purposes. Unit 13 is used to store the 
boundary arrays for later uses, if these arrays are computed for the present 
job. Unit 14 is used to store pointer arrays for later uses, if these arrays are 
generated for the present job. For large problems, our experience has 
indicated that it would take too much time to process the boundary arrays and 
to generate pointer arrays. Hence, it is advisable that for multijob executions, 
these boundary and pointer arrays should be computed only once and written 
on units 13 and 14, respectively. Once they are stored on units 13 and 14, 
the input data file should be properly identified for the new job so they can be 
read via units 13 and 14, respectively. Finally, unit 20 is used to print any 
variable for debugging purposes. 
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4 Sample Problems 

To verify 3DSALT, three illustrative examples are used. The first one is a 
one-dimensional flow problem through a column. The second one is a one- 
dimensional transport problem through a column. The third one is a three- 
dimensional salt intrusion problem. 

Problem No. I : One-Dimensional Column Flow 
Problem 

This example is selected to represent the simulation of a one-dimensional 
flow problem with 3DSALT. The column is 200 cm long and 50 by 50 cm in 
cross section (Figure 4.1). The column is assumed to contain soil with a 
saturated hydraulic conductivity of 10 cmlday, a porosity of 0.45, and a field 
capacity of 0.1. The unsaturated characteristic hydraulic properties of the soil 
in the column are given as 

and 

where h, and h, are the parameters used to compute the water content and the 
relative hydraulic conductivity, respectively. 

The initial conditions assumed are a pressure head of -90 cm imposed on 
the top surface of the column, 0 cm on the bottom surface of the column, and 
-97 cm elsewhere. The following boundary conditions are given: no flux is 
imposed on the left, front, right, and back surfaces of the column; pressure 
head is held at 0 cm on the bottom surface; and variable condition is used on 
the top surface of the column with a ponding depth of zero, minimum 
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Figure 4.1. Problem definition for the one-dimensional transient f low in a 
soil column 

pressure of -90 cm, and a rainfall of 5 crnlday for the first 10 days and a 
potential evaporation of 5 crnlday for the second 10 days. 

The region of interest, that is, the whole column, will be discretized with 
1 x 1 X 40 = 40 elements with element size = 50 X 50 X 5 cm, resulting 
in 2 x 2 x 41 = 164 node points. The incomplete Cholesky preconditioned 
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conjugate gradient method is used to solve the resulting matrix equation. 
Thus, the subregion data are not needed. 

A variable time-step size is used. The initial time-step size is 0.05 day, 
and each subsequent time-step size is increased by 0.2 times with a maximum 
time-step size not greater than 1.0 d. Because there is an abrupt change in the 
flux value from 5 cm/day (infiltration) to -5 cmlday (evaporation) imposed on 
the top surface at day 10, the time-step size is automatically reset to 0.05 d on 
the tenth day. A 20-day simulation will be made with 3DSALT. With the 
time-step size described above, 44 time-steps are needed. 

The pressure head tolerance is 2 cm for nonlinear iteration and 
1 . cm for block iteration. The relaxation factor for both the nonlinear 
iteration and block iteration is 0.5. 

To execute the problem, the maximum control-integers in the main 
program should be specified as follows: 

PARAMETER(MAXNPK = 164,MAXELK =40,MXBNPK = 164, 
MXBESK = 162) 

PARAMETER(MXJBDK = 12,MXKBDK= 8,MXNTIK=44,MXDTCK=3) 
PARAMETER(LTMXNK = 1 ,LMXNPK= 1 ,LMXBWK = 1 ,MXRGNK= 1) 
PARAMETER(MXMATK = 1 ,MXSPMK =4,MXMPMK = 6, 

MXRMPK = 8) 

PARAMETER(MXSELc = 1 ,MXSPRc = 1 ,MXSDPc = 1 ,MXWNPc = 1, 
MXWPRc = 1 ,MXWDPc = 1) 

PARAMETER(MXCNPc = 1 ,MXCESc = 1 ,MXCPRc = 1 ,MXCDPc = 1) 
PARAMETER(MXNNPc= 1 ,MXNESc = 1 ,MXNPRc = 1 ,MXNDPc = 1) 
PARAMETER(MXVNPc = 1 ,MXVESc = 1 ,MXVPRc = 1 ,MXVDPc = 1) 
PARAMETER(MXDNPc = 1 ,MXDPRc = 1 ,MXDDPc = 1) 

To reflect the soil property function given by Equations 4.1 and 4.2, we 
have to modify the subroutine SPROP in the source codL Lines between 
SPRO 72( md SPRO 845 in the source code must be changed, for this 
example, to the following form for computing the moisture content and water 
capacity. 

\ CR = THPROP(1 ,MTYP) 
WCS = THPROP(2,MTYP) 
HAA = THPROP(3 ,MTYP) 
HAB = THPROP(4,MTYP) 
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DO 390 KG- 1,8 
HNP = HKG(KG) 
HNP=-HNP 
IF(HNP.LE.0) GO TO THEN 

C 
C ------- SATURATED CONDITION 
C 

TH(KG,M) = WCS 
DTH(KG,M) =O.ODO 
USKFCT = 1 .OD0 

C 
ELSE 

C 
C ------- UNSATURATED CASE 
C 

THMKG = WCS-(WCS-WCR)*(-HNP-HAA)/(HAB-HAA) 
TH(KG ,M) = THMKG 
DTH(KG,M) =-(WCS-WCR)/(HAB-HAA) 
USKFCT=(THMKG-WCR)/(WCS-WCR) 

END IF 

Input for Problem No. I 

With the above descriptions, the input data can be prepared according to 
the instructions given in Appendix A. The input data are given in Table 4.1. 

Problem No. 2: One-Dimensional Column 
Transport 

A simple problem is presented here to illustrate the application of this 
document. This is a one-dimensional transport problem between x = 0 and x 
= 200.0 (Figure 4.2). Initially, the concentration is zero throughout the 
region of interest. The concentration at x = 0.0 is maintained at C = C, = 

1.0 (Fig. 4.2). The natural condition of zero gradient flux is imposed at x = 

200.0 (Fig. 4.2). A bulk density of 1.2, a dispersivity of 5.0, and an 
effective porosity of 0.4 (not used in the program) are assumed. A specific 
discharge (Darcy velocity) of 2.0 is assumed and a moisture content of 0.4 is 
used. For numerical simulation the region is divided into 40 elements of 
equal size with 5.0. A time-step size of 0.5 is used and a 40 time-step 
simulation is made. No adsorption is allowed. For this discretization, the 
mesh Peclet number is P, = 1 and the Courant number is C, = 0.5. 
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Table 4.1 Input Data Set for Example 1 

1 ONE-D COLUMN INFILTRATION-EVAPORATION; L =  CM, T = DAY, M = G, 3dfemft.exl 
1001 1 
- - - - - - - - - - - - - - - - - - data set 2: option parameters 
5 0  0.5d0 
1 1 0 0 3 3  
1 1.0 0.5d0 0.5d0 
2 0 1  1 1  
1.0d0 0.5d0 1.0d0 1.0d0 
1 1.0d0 1.0d0 1.0d0 

- - - - - - - - - - - - - - - - - - data set 3: iteration parameters 
5 0  2 0  100 2.0d-2 2.0d-2 
1 100 1.0d-3 1.0d-4 
- - - - - - - - - - - - - - - - - - data set 4: time control parameters 
4 4  3 
0.05d0 0.20d0 1.0d0 22.0d0 

333030300030003003000033303030003000300300003 
11 101010001000100100001 1101010001000100100001 

1 .OD01 2.0000D1 1 .OD38 
- - - - - - - - - - - - - - - - - - DATA SET 5: MATERIAL PROPERTIES 
1 8 8  

O.ODO O.ODO 10.ODO O.ODO 0.ODO O.ODO O.OdO O.OdO 
1.0d0 O.OdO O.OdO O.OdO 1.0d0 O.OdO O.OdO O.OdO 
O.OdO 1.2d0 5.0d0 O.OdO O.OdO 1.0d0 O.OdO O.OdO 

- - - - - - - - - - - - - - - - - - DATA SET 6: soil properties 
0 4 0 1.0d0 1.OdO 1.0d0 

0.1 50D0 0.450DO O.OODO -1 .OD2 THPROP 
0.000DO 0.000DO 0.00DO O.ODO AKPROP 

C * * * * * * *  DATA SET 7: NODE COORDINATES 
164  

1 4 0  1 O.ODO 50.000 O.ODO O.ODO O.ODO 5.000 
42  4 0  1 O.ODO O.ODO O.ODO O.ODO O.ODO 5.000 
83 4 0  1 50.ODO O.ODO O.ODO O.ODO O.ODO 5.ODO 
124  4 0  1 50.ODO 50.ODO O.ODO O.ODO O.ODO 5.ODO 

0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 
C * * * * * * I  DATA SET 9: ELEMENT INCIDENCES 

4 0  
1 39 1 42  8 3  124  1 43 8 4  125 2 1 
0 0 0 0 0 0 0 0 0 0 0 0  END OF IE 

c * I * . * * *  data set1 0: material correction 
0 

c * * * * * I *  DATA SET 1 1 : INITIAL CONDITIONS 
1 3 41 O.ODO O.ODO O.ODO 
2 38 1 -9.70Dl O.ODO O.ODO 

43 38 1 -9.70Dl 0.ODO O.ODO 
8 4  38 1 -9.70Dl O.ODO O.ODO 

125 38 1 -9.70D1 O.ODO O.ODO 
41 3 41 -9.00Dl 0.ODO O.ODO 
0 0 0  0.0 0.0 0.0 END OF IC, flow 

- - - - - - - - - - - - - - - - - - data set 12: element(distributed1 sourceisink, flow 
0 0 0 0  

- - - - - - - - - - - - - - - - - - data set 13: point(wel1) sourceisink, flow 

0 0 0 0  
(Continued) 
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Table 4.1 (Concluded) 

- - - - - - - - -  - - - - - - - - -  data set 16: rainfalllevaporation-seepage boundary conditions 
1 4 1 4 0  
O.ODO 5.ODO 10.ODO 5.ODO 10.001DO -5.ODO 1 .OD38 -5.ODO 
1 0 0 1 0  
0 0 0 0 0  END OF IRTYP 
1 0 0 82 123 164 41 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 OENDOFISV(J,I)J=1,4 
1 3 1 41 41 
0 0 0 0 0  END OF NPVB 
1 3 1  0.ODO O.ODO 0.0 
0 0 0 0.0 0.0 0.0 END OF HCON 
1 3 1 -90.ODO O.ODO 0.0 
0 0 0 0.0 0.0 0.0 END OF HMlN 

C * * * * * * *  DATA SET 17: DIRICHLET BOUNDARY CONDITIONS, flow 
4 1 2 0  
O.ODO O.ODO 1.OD38 O.ODO 
1 42  83 124 
1 3 1 1 0  
0 0 0 0 0 END OF IDTYP 

- - - - - - - - - - - - - - - - - - data set 18: cauchy boundary conditions, flow 
0 0 0 0 0  

- - - - - - - - - - - - - - - - - - data set 19: neurnann boundary conditions, flow 
0 0 0 0 0  
0 END OF JOB ......................................... 0000 

To execute the problem, the maximum control-integers in the MAIN must 
be specified as follows: 

PARAMETER(MAXNPK = 164,MAXELK=4O,MXBNPK = 164, 
MXBESK= 162) 

PARAMETER(MXJBDK= 12,MXKBDK=2,MXNTIK=40,MXDTCK = 1) 
PARAMETER(LTMXNK = 1 ,LMXNPK= 1 ,LMXBWK= 1 ,MXRGNK= 1) 
PARAMETER(MXMATK = 3 ,MXSPMK= 6,MXMPMK=8, 

MXRMPK = 8) 

PARAMETER(MXSELc= 1 ,MXSPRc= 1 ,MXSDPc= 1 ,MXWNPc= 1,  
MXWPRc = 1 ,MXWDPc = 1) 

PARAMETER(MXCNPc = 1 ,MXCESc = 1 ,MXCPRc = 1 ,MXCDPc = 1) 
PARAMETER(MXNNPc = 1 ,MXNESc = 1 ,MXNPRc = 1 ,MXNDPc = 1) 
PARAMETER(MXVNPc =4,MXVESc = 1 ,MXVPRc = 1 ,MXVDPc =2) 
PARAMETER(MXDNPc =4,MXDPRc = 1 ,MXDDPc =2) 
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Figure 4.2. Problem definition for the one-dimensional transient 
transport problem in a soil column 

Input for Problem No. 2 

Table 4.2 shows the input data set for the sample problem described in the 
above section. 

Problem No. 3: Three-Dimensional Salt Intrusion 
Problem 

This example is selected to represent the simulation with 3DSALT of a 
three-dimensional salt intrusion problem due to pumping near a coastal area. 
The problem involves a constant pumping well located near the center of a 
region (Figure 4.3). The region consists of 80 m in x-direction, 100 m in y- 
direction, and 11 m in z-direction on the plane y = 50 m and sloping to 10 m 
at y = 0 and y = 100 m. This region is bounded on the front and back by 
tidal water bodies. The bottom of the region is bounded by an impervious 
aquifuges. On the right-hand side and the reversed L-shaped left-hand side 
the region is bounded by groundwater dividers (Figure 4.3). The pumping 
well is located at (x,y) = (60,50) (Figure 4.3). The pumping rate of the well 
is kept constant at 0.001 m3/hr. Initially, the water in the subsurface is 
hydrostatic. The tidal fluctuation on the bounding water bodies (front and 
back faces) is 1.0 m with a mean tidal elevation of z = 10 m. The medium 
in the region is assumed to be anisotropic and have saturated hydraulic 
conductivity components K, = 0.03 m h r ,  K, = 0.03 m/hr, and &, = 
0.01 mlhr. The porosity of the medium is 0.25 and the field capacity is 
0.0125. The unsaturated characteristic hydraulic properties of the medium are 
given as 
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Table 4.2 
input Data Set for Example 2 

1 ONE-D COLUMN INFILTRATION-EVAPORATION; L =  CM, T = DAY, M = G, 3dfemft.exl 
1011 
- - - - - - - - - - - - - - - - - - data set 2: option parameters 
50 0.5d0 
1 1  1 0 3 3  
1 1.0 0.5d0 0.5d0 
- 1 0 1 1 1  
1.0d0 0.5d0 1.0d0 1.0d0 
1 1.0d0 1.0d0 1.0d0 

- - - - - - - - - - - - - - - - - - data set 3: iteration parameters 
50 2 0  100  2.0d-2 2.0d-2 
1 100  1.0d-3 1.0d-4 
- - - - - - - - - - - - - - - - - - data set 4: time control parameters 
4 4  3 
0.5d0 O.OdO 1.0d0 22.0d0 

333030300030003003000033303030003000300309003 
11 1010100010001001000011 101010001000100?00001 

1 .OD01 2.0000D1 1 .OD38 
- - - - - - - - - - - - - - - - - - DATA SET 5: MATERIAL PROPERTIES 
1 8 8  

O.ODO O.ODO 10.ODO O.ODO O.ODO O.ODO O.OdO O.OdO 
1.0d0 O.OdO O.OdO O.OdO 1.0d0 O.OdO O.OdO O.OdO 
O.OdO 1.2d0 5.0d0 O.OdO O.OdO 1.0d0 O.OdO O.OdO 

- - - - - - - - - - - - - - - - - - DATA SET 6: soil properties 
0 4 0 1.0d0 7.316d12 1.1232d2 

0.1 5 0 0 0  0.450DO O.OODO -1 .OD2 THPROP 
0.000DO 0.000DO O.OOD0 O.ODO AKPROP 

C * * * * * DATA SET 7: NODE COORDINATES 
164  

1 4 0  1 O.ODO 50.ODO 0.ODO O.ODO O.ODO 5.ODO 
42  4 0  1 O.ODO O.ODO 0.ODO O.ODO O.ODO 5.ODO 
83 4 0  1 50.ODO O.ODO O.ODO O.ODO O.ODO 5.ODO 
124  4 0  1 50.ODO 50.ODO O.ODO O.ODO O.ODO 5.ODO 

0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 
c e l * * * * *  DATA SET 9: ELEMENT INCIDENCES 

4 0  
1 3 9  1 42  83 124 1 43 8 4  125 2 1 
0 0 0 0 0 0 0 0 0 0 0 0  END OF IE 

C * * * * * * *  data set1 0: material correction 
0 

C ****I** DATA SET 1 1 : INITIAL CONDITIONS 
1 3 41 1.0d0 O.OdO 0.0 
2 3 8  1 O.OdO O.OdO O.OdO 

4 3  38 1 O.OdO O.OdO O.OdO 
8 4  3 8  1 O.OdO O.OdO O.OdO 
125 38 1 O.OdO O.OdO O.OdO 
41 3 41 O.OdO O.OdO O.OdO 
0 0 0  O.OdO O.OdO O.OdO end of ic, transport 

- - - - - - - - - - - - - - - - - - data set 14: element(distributed) sourcelsink, transport 
0 0 0 0  

- - - - - - - - - - - - - - - - - - data set 15: point(wel1) sourcelsink, transport 

0 0 0 0 
- - - - - - - - - - - - - - - - -  - data set 20: run-inlseep-out boundary 

1 4 1 2 0  
O.OdO O.OdO 1.0d38 O.OdO 

(Continued) 
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(1 Table 4.2 (Concluded) 
- 

1 0 0 1 0  
0 0 0 0 0 end of irtyp 
1 0 0 82 123 164 41 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 end fof isvt(j,i),j = 1,4 
1 3 1 41 41 
0 0 0 0 0 end of npvbt 

- - - - - - - - - - - - - - - - - - data set 21 : dirichlet boundary conditions, transport 
4 1 2 0  

O.OdO 1.0d0 1.0d38 1 .OdO 
1 42  83 124  
I 3 1 1 0  
0 0 0 0 0 end of idtyp 

- - - - - - - - - - - - - - - - - - data set 22: Cauchy boundary condition, transport 
0 0 0 0 0  

- - - - - - - - - - - - - - - - - - data set 23: Neumann boundary condition, transport 
0 0 0 0 0 

c * * I * * * *  DATA SET 24: HYDROLOGICAL BOUNDARY CONDITIONS 
I * I * * * * * * * * * * * * * * * * * * * I  

1 163 1 O.ODO O.ODO 2.000 0.ODO O.ODO O.ODO 
0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 END OF VELOCITY 

1 39 1 0.4DO 0.0 
0 0 0 0.0 0.0 END OF TH 
0 END OF JOB ......................................... 0000 

Figure 4.3. Problem definition for the three-dimensional transient salt 
intrusion problem 
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and 

where ha, a, and p are the parameters used to compute the water content and 
the relative hydraulic conductivity. 

The following boundary conditions are given: pressure head is assumed 
hydrostatic and the concentration is assumed 1.0 on two vertical planes located 
at y = 0 and 100, respectively; no flux is imposed on all other boundaries of 
the region for both flow and transport. The pumping well is screened at 
nodes 444, 115, and 186. A total of 960 time-steps with the time-step size = 

0.5 hr will be made. Initial conditions for flow are hydrostatic and zero 
concentration for transport. 

For numerical simulations, the region of interest is discretized with five 
planes or four layers in the vertical direction. Each plane is made of 71 nodes 
or 52 elements as shown in Figure 4.4. This discretization results in 
355 nodes and 208 elements. The numbering system starts from the bottom 
plane and progresses upward to the fifth plane. In the x-direction, nodes are 
spaced evenly at Ax = 10 m. In the y-direction, nodes are spaced evenly at 
Ay = 10 m. In the z-direction, the node space ranges from 2.5 m to 2.75 m. 
The incomplete Cholesky preconditioned conjugate gradient method is used to 
solve the matrix equations; thus the subregional input is not needed. 

The pressure head tolerance is m for nonlinear iteration and is 
5 10"m for block iteration. The concentration tolerance is 0.001 for the 
nonlinear iteration and 0.0005 for block iteration. The relaxation factors for 
nonlinear iteration and block iteration are set equal to 1.0 and 1.5, 
respectively, for flow and 1.0 and 1 .O, respectively, for transport. 

To execute the problem, the maximum control-integers in the MAIN 
should be specified according to the following: 

PARAMETERtMAXNPK = 355,MAXELK= 208,MXBNPK =250, 
MXBESK = 248) 

PARAMETERtMXJBDK =27,MXKBDK = 8,MXNTIK = 960, 
MXDTCK = 2) 

PARAMETER(LTMXNK= 1 ,LMXNPK = 1 ,LMXBWK= 1 ,MXRGNK = 1) 
PARAMETER(MXMATK = 1 ,MXSPMK = 5 ,MXMPMK = 8, 

MXRMPK = 8) 
C 

PARAMETERtMXSELh = 1 ,MXSPRh = 1 ,MXSDPh = 1 ,MXWNPh = 3, 
MXWPRh= 1 ,MXWDPh=2) 

PARAMETER(MXCNPh= 1 ,MXCESh = 1 ,MXCPRh = 1 ,MXCDPh = 2) 
PARAMETER(MXNNPh = 1 ,MXNESh = 1 ,MXNPRh = 1 ,MXNDPh =2) 
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Figure 4.4. Discretizatio~ of the region with five planes (four layers) and 
nine subregions 
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To reflect the soil property function given by Equations 4.3 and 4.4, we 
have to modify the subroutine SPROP in the source code. Lines between 
SPRO 845 and SPRO 1100 in the subroutine SPROP must be modified 
according to 

WCR=SPP(l ,MTYP, 1) 
WCS = SPP(2,MTYP, 1) 
HAA = SPP(3,MTYP, 1) 
ALPHA = SPP(4,MTYP, 1) 
BETA = SPP(S,MTYP, 1) 
DO 390 KG=1,8 
HNP = HKG(KG) 
HNP=-HNP 
IF(HNP. LE .O) THEN 

C 
C ------- SATURATED CONDITION 

TH(KG,M) = WCS 
DTH(KG,M)=O.ODO 
USKFCT = 1 .OD0 

C 
ELSE 

C 
c - -- ---- UNSATURATED CASE 

THMKG= WCR+ (WCS-WCR)/(l .ODO+ (ALPHA*DABS 
(-HNP-HAA))**BETA) TH(KG,M) =THMKG 

DNOM= 1 .ODO+ (ALPHA*DABS(-HNP-HAA))**BETA 
DTH(KG,M) = (WCS-WCR)*(ALPHA*DABS(-HNP-THAA))** 

(BETA-1 .ODO)/l DNOM**2 
USKFCT = ((THMKG-WCR)/(WCS-WCR))**2 

ENDIF 

Input for Problem No. 3 

Table 4.3 shows the input data set for the sample problem described in the 
above section. 
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Table 4.3 
Input Data Set for Example 3 

1 THREE DIMENSIONAL SALT INTRUSION, L=M, T=H, M =KG 11010 

DATA SET#2 : OPTION PARAMETER 

50 0.5d0 

1 1  1 0 3 3  

1 1 .O 0.5 I .O 

2 0 1  1 1  

1.0 1.0 1.0 1.0 

1 1.0 1.0 1.0 

DATA SET #3 : ITERATION PARAMETERS 

20 1 400 0.01 0.01 

1 20 0.001 0.001 

DATA SET #4 : TIME CONTROL PARAMETERS 

960 4 

0.5 0.0 1 .O 480 

3000000000030000000000300000000030000000003000000000030000000000030000000 

0000300000000003000000000300000000003000000000300000000003000000000003000 

0000000300000000003000000000030000000003000000000030000000000300000000000 

3000000000030000000000300000000003000000000300000000030000000000030000000 

0000300000000003000000000030000000000300000000030000000003000000000003000 

0000000300000000003000000000030000000003000000000300000000000300000000000 

3000000000300000000003000000000030000000000300000000003000000000030000000 

0000300000000003000000000030000000000300000000030000000003000000000003000 

0000000030000000003000000000030000000003000000000030000000000030000000000 

3000000000030000000000300000000003000000000030000000003000000000030000000 

0000300000000003000000000030000000000300000000003000000000030000000003000 

0000000300000000003000000000030000000000300000000003000000000300000000000 

3 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000' 700000000000000000000000000000000000000000 

0000000000000000000000000000G~3000000000000000000000000000000000000000000 

(Sheet 1 of 11) 

Chapter 4 Sample Problems 



Table 4.3 (Continued) 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000000 

0 

6.0 12.0 18.0 1 .OD38 

DATA SET #5 : MATERIAL PROPERlTlES 

1 8 8  

3.00D-2 3.000-2 1 .OD-2 O.ODO O.ODO 0.ODO O.ODO O.ODO 

1 .OD0 O.ODO O.ODO 0.ODO 1 .OD0 0.ODO O.ODO O.ODO 

O.ODO 1.2DO 5.ODO 5.ODO O.ODO 1 .OD0 O.ODO O.ODO 

DATA SET #6 : SOIL PROOERlTlES 

0 5 0 1.ODO 1.27D8 4.68D2 

0.01 25D0 0.25000 O.OOD0 0.5DO 2.ODO 

0.000DO 0.000DO O.OODO O.ODO 0.0 

DATA #7 : NODAL COORDINATES 

355 

1 4 71 0.0 0.0 0.0 0.0 0.0 2.50 

5 4 71 10.0 0.0 0.0 0.0 0.0 2.50 

9 4 71 20.0 0.0 0.0 0.0 0.0 2.50 

13 4 71 30.0 0.0 0.0 0.0 0.0 2.50 

17 4 71 40.0 0.0 0.0 0.0 0.0 2.50 

28 4 71 50.0 0.0 0.0 0.0 0.0 2.50 

39 4 71 60.0 0.0 0.0 0.0 0.0 2.50 

50 4 71 70.0 0.0 0.0 0.0 0.0 2.50 

61 4 71 80.0 0.0 0.0 0.0 0.0 2.50 

2 4 71 0.0 10.0 0.0 0.0 0.0 2.55 

6 4 71 10.0 10.0 0.0 0.0 0.0 2.55 

10 4 71 20.0 10.0 0.0 0.0 0.0 2.55 

14 4 71 30.0 10.0 0.0 0.0 0.0 2.55 

18 4 71 40.0 10.0 0.0 0.0 0.0 2.55 

29 4 71 50.0 10.0 0.0 0.0 0.0 2.55 
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Table 4.3 (Continued) 

40 4 71 60.0 10.0 0.0 0.0 0.0 2.55 

51 4 71 70.0 10.0 0.0 0.0 0.0 2.55 

62 4 71 80.0 10.0 0.0 0.0 0.0 2.55 

3 4 71 0.0 20.0 0.0 0.0 0.0 2.60 

7 4 71 10.0 20.0 0.0 0.0 0.0 2.60 

1 I 4 71 20.0 20.0 0.0 0.0 0.0 2.60 

15 4 71 30.0 20.0 0.0 0.0 0.0 2.60 

19 4 71 40.0 20.0 0.0 0.0 0.0 2.60 

30 4 71 50.0 20.0 0.0 0.0 0.0 2.60 

41 4 71 60.0 20.0 0.0 0.0 0.0 2.60 

52 4 71 70.0 20.0 0.0 0.0 0.0 2.60 

63 4 71 80.0 20.0 0.0 0.0 0.0 2.60 

4 4 71 0.0 30.0 0.0 0.0 0.0 2.65 

8 4 71 10.0 30.0 0.0 0.0 0.0 2.65 

12 4 71 20.0 30.0 0.0 0.0 0.0 2.65 

16 4 71 30.0 30.0 0.0 0.0 0.0 2.65 

20 4 71 40.0 30.0 0.0 0.0 0.0 2.65 

31 4 71 50.0 30.0 0.0 0.0 0.0 2.65 

42 4 71 60.0 30.0 0.0 0.0 0.0 2.65 

3 4 71 70.0 30.0 0.0 0.0 0.0 2.65 

64 4 71 80.0 30.0 0.0 0.0 0.0 2.65 

21 4 71 40.0 40.0 0.0 0.0 0.0 2.70 

32 4 71 50.0 40.0 0.0 0.0 0.0 2.70 

43 4 71 60.0 40.0 0.0 0.0 0.0 2.70 

54 4 71 70.0 40.0 0.0 0.0 0.0 2.70 

65 4 71 80.0 40.0 0.0 0.0 0.0 2.70 

22 4 71 40.0 50.0 0.0 0.0 0.0 2.75 

33 4 71 50.0 50.0 0.0 0.0 0.0 2.75 

44 4 71 60.0 50.0 0.0 0.1) 0.0 2.75 

55 4 71 70.0 50.0 0.0 0.0 0.0 2.75 

66 4 71 80.0 50.0 0.0 0.0 0. 2.75 

23 4 71 40.0 60.0 0.0 0.0 0.0 2.70 

34 4 71 50.0 60.0 0.0 0.0 0.0 2.70 

45 4 71 60.0 60.0 0.0 0.0 0.0 2.70 
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Table 4.3 (Continued) 

56 4 71 70.0 60.0 0.0 0.0 0.0 2.70 

67 4 71 80.0 60.0 0.0 0.0 0.0 2.70 

24 4 71 40.0 70.0 0.0 0.0 0.0 2.65 

35 4 71 50.0 70.0 0.0 0.0 0.0 2.65 

46 4 71 60.0 70.0 0.0 0.0 0.0 2.65 

57 4 71 70.0 70.0 0.0 0.0 0.0 2.65 

68 4 71 80.0 70.0 0.0 0.0 0.0 2.65 

25 4 71 40.0 80.0 0.0 0.0 0.0 2.60 

36 4 71 50.0 80.0 0.0 0.0 0.0 2.60 

47 4 71 60.0 80.0 0.0 0.0 0.0 2.60 

58 4 71 70.0 80.0 0.0 0.0 0.0 2.60 

69 4 71 80.0 80.0 0.0 0.0 0.0 2.60 

26 4 71 40.0 90.0 0.0 0.0 0.0 2.55 

37 4 71 50.0 90.0 0.0 0.0 0.0 2.55 

48 4 71 60.0 90.0 0.0 0.0 0.0 2.55 

59 4 71 70.0 90.0 0.0 0.0 0.0 2.55 

70 4 71 80.0 90.0 0.0 0.0 0.0 2.55 

27 4 71 40.0 100.0 0.0 0.0 0.0 2.50 

38 4 71 50.0 100.0 0.0 0.0 0.0 2.50 

49 4 71 60.0 100.0 0.0 0.0 0.0 2.50 

60 4 71 70.0 100.0 0.0 0.0 0.0 2.50 

71 4 71 80.0 100.0 0.0 0.0 0.0 2.50 

0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 

DATA SET #9 : ELEMENT DATA 

208 

1 3 5 2  1 5 6 2 72 76 77 7371 

2 3 52 2 6 7 3 73 77 78 74 71 

3 3 5 2  3 7 8 4 74 78 79 7571 

4 3 5 2  5 9 10 6 76 80 81 7771 

5 3 5 2  6 10 11 7 77 81 82 7871 

6 3 5 2  7 11 12 8 78 82 83 7971 

7 3 5 2  9 13 14 10 80 84 85 81 71 

8 3 5 2  10 14 15 11 81 85 86 8271 

9 3 5 2  11 15 16 12 82 86 87 8371 
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Table 4.3 (Continued) 

1 0 3 5 2  13 17 18 14 84 88 89 8571 

1 1 3 5 2  14 18 19 15 85 89 90 8671 

1 2 3 5 2  15 19 20 16 86 90 91 8771 

1 3 9  1 17 28 29 18 88 99100 89 1 

65 9 1 88 99 100 89 159 170 171 160 1 

1 1 7 9  1159170171  160230241 242231 1 

169 9 I 230 241 242 231 301 312 313 302 1 

2 3 9  1 28 39 40 29 99110111 100 1 

7 5 9  1 99 110111 100170181 182 171 1 

1 2 7 9  1170181 182 171 241 252253242 1 

179 9 1 241 252 253 242 31 2 323 324 31 3 1 

3 3 9  1 39 50 51 40110121 122111 1 

8 5 9  1 I10121 122111 181 192 193182 1 

1 3 7 9  1181 192 193 182252263264253 1 

1 8 9 9  1252263264253323334335324  1 

4 3 9  1 50 61 62 51 121 132 133 122 1 

95 9 1 121 132 133 122 192 203 204 193 1 

1 4 7 9  1192203204193263274275264  1 

199 9 1 2 6 3  274275 264334345 346 335 1 

0 0 0  0 0 0 0 0 0 0 0 0  

DATA SET #10 : MATERIAL TYPE CORRECTION 

0 

DATA SET #1 1 : INITIAL CONDITION 

1 4 71 10.0 -2.50 0.0 

5 4 71 10.0 -2.50 0.0 

9 4 71 10.0 -2.50 0.0 

13 4 71 10.0 -2.50 0.0 

17 4 71 10.0 -2.50 0.0 

28 4 71 10.0 -2.50 0.0 

39 4 71 10.0 -2.50 0.0 

50 4 71 10.0 -2.50 0.0 

61 4 71 10.0 -2.50 0.0 

2 3 71 10.0 -2.55 0.0 

286 0 0 0.0 0.0 0.0 
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Table 4.3 (Continued) 

6 3 71 10.0 -2.55 0.0 

290 0 0 0.0 0.0 0.0 

10 3 71 10.0 -2.55 0.0 

294 0 0 0.0 0.0 0.0 

14 3 71 10.0 -2.55 0.0 

298 0 0 0.0 0.0 0.0 

18 3 71 10.0 -2.55 0.0 

302 0 0 0.0 0.0 0.0 

29 3 71 10.0 -2.55 0.0 

31 3 0 0 0.0 0.0 0.0 

40 3 71 10.0 -2.55 0.0 

324 0 0 0.0 0.0 0.0 

51 3 71 10.0 -2.55 0.0 

335 0 0 0.0 0.0 0.0 

62 3 71 10.0 -2.55 0.0 

346 0 0 0.0 0.0 0.0 

3 3 71 10.0 -2.60 0.0 

287 0 0 0.0 0.0 0.0 

7 3 71 10.0 -2.60 0.0 

291 0 0 0.0 0.0 0.0 

11 3 71 10.0 -2.60 0.0 

295 0 0 0.0 0.0 0.0 

15 3 71 10.0 -2.60 0.0 

299 0 0 0.0 0.0 0.0 

19 3 71 10.0 -2.60 0.0 

303 0 0 0.0 0.0 0.0 

30 3 71 10.0 -2.60 0.0 

314 0 0 0.0 0.0 0.0 

41 3 71 10.0 -2.60 0.0 

325 0 0 0.0 0.0 0.0 

52 3 71 10.0 -2.60 0.0 

336 0 0 0.0 0.0 0.0 

63 3 71 10.0 -2.60 0.0 

347 0 0 0.0 0.0 0.0 

(Sheet 6 of 1 1 ) 



Table 4.3 (Continued) 

4 3 71 10.0 -2.65 0.0 

288 0 0 0.0 0.0 0.0 

8 3 71 10.0 -2.65 0.0 

292 0 0 0.0 0.0 0.0 

12 3 71 10.0 -2.65 0.0 

296 0 0 0.0 0.0 0.0 

16 3 71 10.0 -2.65 0.0 

300 0 0 0.0 0.0 0.0 

20 3 71 10.0 -2.65 0.0 

304 0 0 0.0 0.0 0.0 

31 3 71 10.0 -2.65 0.0 

315 0 0 0.0 0.0 0.0 

42 3 71 10.0 -2.65 0.0 

326 0 0 0.0 0.0 0.0 

53 3 71 10.0 -2.65 0.0 

337 0 0 0.0 0.0 0.0 

64 3 71 10.0 -2.65 0.0 

348 0 0 0.0 0.0 0.0 

21 3 71 10.0 -2.70 0.0 

305 0 0 0.0 0.0 0.0 

32 3 71 10.0 -2.70 0.0 

316 0 0 0.0 0.0 0.0 

43 3 71 10.0 -2.70 0.0 

327 0 0 0.0 0.0 0.0 

54 3 71 10.0 -2.70 0.0 

338 0 0 0.0 0.0 0.0 

65 3 71 10.0 -2.70 0.0 

349 0 0 0.0 0.0 0.0 

22 3 71 10.0 -2.75 0.0 

306 0 0 0.0 0.0 0.0 

33 3 71 10.0 -2.75 0.0 

31 7 0 0 0.0 0.0 0.0 

44 3 71 10.0 -2.75 0.0 

328 0 0 0.0 0.0 0.0 
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Table 4.3 (Continued) 

55 3 71 10.0 -2.75 0.0 

339 0 0 0.0 0.0 0.0 

66 3 71 10.0 -2.75 0.0 

350 0 0 0.0 0.0 0.0 

23 3 71 10.0 -2.70 0.0 

307 0 0 0.0 0.0 0.0 

34 3 71 10.0 -2.70 0.0 

31 8 0 0 0.0 0.0 0.0 

45 3 71 10.0 -2.70 0.0 

329 0 0 0.0 0.0 0.0 

56 3 71 10.0 -2.70 0.0 

340 0 0 0.0 0.0 0.0 

67 3 71 10.0 -2.70 0.0 

351 0 0 0.0 0.0 0.0 

24 3 71 10.0 -2.65 0.0 

308 0 0 0.0 0.0 0.0 

35 3 71 10.0 -2.65 0.0 

319 0 0 0.0 0.0 0.0 

46 3 71 10.0 -2.65 0.0 

330 0 0 0.0 0.0 0.0 

57 3 71 10.0 -2.65 0.0 

341 0 0 0.0 0.0 0.0 

68 3 71 10.0 -2.65 0.0 

352 0 0 0.0 0.0 0.0 

25 3 71 10.0 -2.60 0.0 

309 0 0 0.0 0.0 0.0 

36 3 71 10.0 -2.60 0.0 

320 0 0 0.0 0.0 0.0 

47 3 71 10.0 -2.60 0.0 

331 0 0 0.0 0.0 0.0 

58 3 71 10.0 -2.60 0.0 

342 0 0 0.0 0.0 0.0 

69 3 71 10.0 -2.60 0.0 

353 0 0 0.0 0.0 0.0 
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I. 

Table 4.3 (Continued) 

26 3 71 10.0 -2.55 0.0 

310 0 0 0.0 0.0 0.0 

37 3 71 10.0 -2.55 0.0 

321 0 0 0.0 0.0 0.0 

48 3 71 10.0 -2.55 0.0 

332 0 0 0.0 0.0 0.0 

59 3 71 10.0 -2.55 0.0 

343 0 0 0.0 0.0 0.0 

70 3 71 10.0 -2.55 0.0 

354 0 0 0.0 0.0 0.0 

27 4 71 10.0 -2.50 0.0 

38 4 71 10.0 -2.50 0.0 

49 4 71 10.0 -2.50 0.0 

60 4 71 10.0 -2.50 0.0 

71 4 71 10.0 -2.50 0.0 

0 0 0 0.0 0.0 0.0 

1 354 1 0.0 0.0 0.0 

0 0 0 0.0 0.0 0.0 

DATA SET #I2 : ELEMENT(DISTR1BUTED) SOURCEISINK, FLOW 

0 0 0 0  

DATA SET #13 : POINT (WELL) SOURCEISINK DATA, FLOW 

3 1  2 0  

0.0 -1.0d-2 1.0d38 -1.0d-2 

44 115 186 

1 2 1 1 0  

0 0 0 0 0 end of iwtyp 

DATA SET #I 4 : ELEMENT(DISTRI8UTED) SOURCEISINK, TRANSPORT 

0 1  2 0  

DATA SET #15 : POINT(WELL) SOURCEISINK DATA, TRANSPORT 

3 1  2 0  

0.0 -1.0d-2 O.OdO 1 .(Id38 -1.0d-2 O.OdO 

44 115 186 

1 2 1 1 0  

0 0 0 0 0 end of iwtyp 
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Table 4.3 (Continued) 

DATA SET #16 : RAINFALLIEVAPORATION-SEEPAGE BOUNDARY CONDITIONS 

0 0 0 0 0 

DATA SET #17 : DlRlCHLET BOUNDARY CONDITIONS, FLOW 

70131 

0.0 10.0 10.0 1.0 1.0d38 6.0d0 

1 5 9 13 17 28 39 50 61 

72 76 80 84 88 99 110 121 132 

143 147 151 155 159 170 181 192203 

214218222226230241 252263274 

285289293297 301 312 323334345 

27 38 49 60 71 

98 109 120 131 142 

169 180 191 202 213 

240251 262 273 284 

31 1 322 333 344 355 

169110 

0 0 0 0 0  

DATA SET #18 : CAUCHY BOUNDARY CONDITIONS, FLOW 

0 0 0 0 0 

DATA SET #19 : NEUMANN BOUNDARY CONDITIONS, FLOW 

0 0 0 0 0  

DATA SET #20 : RUN-INISEEP-OUT BOUNDARY 

0 0 0 0 0  

DATA SET #21 : DlRlCHLET BOUNDARY CONDITIONS, TRANSPORT 

701 2 0  

0.0 1.0 1 .OD38 1.0 

1 5 9 13 17 28 39 50 61 

72 76 80 84 88 99 110121 132 

143 147 151 155 159 170 181 192203 

214218222226230241 252263274 

285 289 293 297 301 312 323 334345 

27 38 49 60 71 

98 109 120 131 142 

169 180 191 202 213 

(Sheet 10 of 1 1 ) 

Chapter 4 Sample Problems 



Table 4.3 (Concluded) 

240251 262 273284 

311 322333344355 

169110 

0 0 0 0 0  

DATA SET #22 : CAUCHY BOUNDARY CONDITIONS, TRANSPORT 

0 0 0 0 0  

DATA SET #23 : NEUMANN BOUNDARY CONDITIONS, TRANSPORT 

0 0 0 0 0  

0 ------------------.------end of job -------------- -------- ----- ---0000000 
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Appendix A 
Data lnput Guide 

Note: Data sets 2 through 23 must be preceded by a record containing 
description of the data set. 

Title 

One record with FORMAT(15,A70,12,311) per problem. This record 
contains the following variables: 

a. NPROB = Problem number. 

b. TITLE = Title of the problem. It may contains up to 65 characters. 

c. IMOD = Integer indicating the simulation modes to be carried on. 

(1) 0 = Do the initial variable computation ONLY, for both flow and 
transport simulations. The purpose for this mode is to verify the 
input data. 

(2) 10 = Do the flow simulation ONLY. 

(3) 1 = Do the transport simulation only. 

(4) 11 = Do both flow and transport simulations. 

d.  IGEOM = Integer indicating if 

(1) The geometry, boundary and pointer arrays are to be printed. 

(2) The boundary and pointer arrays are to be computed or read via 
logical units. If to be computed, they should be written on logical 
units. 
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If IGEOM is even number, (1) will not be printed. If IGEOM is odd 
number, (1) will be printed. If IGEOM is less than or equal to 1, 
boundary arrays will be computed and written on logical unit, but if 
IGEOM is greater than 1, boundary arrays will be read via logical 
unit 3. If IGEOM is less than or equal to 3, pointer arrays will be 
computed and written on Logical Unit 4, but if IGEOM is greater than 
3, pointer arrays will be read via Logical Unit 4. 

e. IBUG = Integer indicating if the diagnostic output is desired 

(1) 0 = No. 

(2) 1 = Yes. 

f. ICHNG = Integer control number indicating if the cyclic change of 
rainfall-seepage nodes is to be printed 

(1) = 0, no. 

(2) = 1, yes. 

Option Parameters 

Six lines of free-formatted data records are required for this data set. 

Line 1 : 

NITERHT = Iteration numbers allowed for solving the coupled nonlinear 
equation 

OMEHT = Iteration parameter for solving the coupled nonlinear equations 

Line 2: 

KSSf = Flow steady-state control 

a. 0 = steady-state solution desired. 

b. 1 = transient state or transient solutions. 

KSSt = Transport steady-state control 

a. 0 = steady-state solution desired. 
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b. 1 = transient state or transient solutions. 

ILUMP = Is mass lumping? 

a. 0 = no. 

b. 1 = yes. 

IMID = Is mid-difference? 

a. 0 = no. 

b. 1 = yes. 

IPNTSf = Is pointwise iterative matrix solver to be used for flow 
simulations? 

a. 0 = no. 

b. 1 = yes. 

IPNTSt = Is pointwise iterative matrix solver to be used for transport 
simulations? 

a. 0 = no. 

b. 1 = yes. 

Line 3: 

KGRAV = Gravity term control 

a. 0 = no gravity term. 

b. 1 = with gravity term. 

Wf = Time derivative weighting factor for flow simulations 

a. 0.5 = Crank-Nicholson central. 

b. 1.0 = backward difference and/or mid-difference. 

OMEf = Iteration parameter for solving the nonlinear flow equation 

a. 0.0 - 1.0 = under-relaxation. 

b. 1.0 - 1.0 = exact relaxation. 
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c. 1.0 - 2.0 = over-relaxation. 

OMIf = Relaxation parameter for solving the linearized flow matrix 
equation pointwisely or blockwisely 

a. 0.0 - 1.0 = under-relaxation 

b. 1.0 - 1.0 = exact relaxation. 

c. 1.0 - 2.0 = over-relaxation. 

Line 4: 

KVIt = Velocity input control 

a. -1 = card input for velocity and moisture content. 

b. 1 = steady-state velocity and moisture content will be calculated from 
steady-state flow simulations. 

c. 2 = transient velocity and moisture content will be obtained from 
transient flow simulations. 

IWET = Weighting function control 

a. 0 = Galerkin weighting. 

b. 1 = Upstream weighting. 

IOPTIM = Optimization factor computing indicator 

a. 1 = Optimization factor is to be computed. 

b. 0 = optimization factor is to be set to -1.0 or 0.0 or 1.0. 

KSORP = Sorption model control 

a. 1 = linear isotherm. 

b. 2 = Freundlich isotherm. 

c. 3 = Langmuir isotherm. 

LGRN = Lagrangian approach control 

a. 0 = no. 

b. 1 = yes. 
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Line 5 :  

Wt = Time derivative weighting factor for transport simulations 

a. 0.5 = Crank-Nicholson central. 

b. 1.0 = backward difference and/or mid-difference. 

WVt = Integration factor for velocity; should be between 0.0 to 1 .O. 

OMEt = Iteration parameter for solving the nonlinear transport matrix 
equation 

a. 0.0 - 1.0 = under-relaxation. 

b. 1.0 - 1.0 = exact relaxation. 

c. 1.0 - 2.0 = over-relaxation. 

OMIt = Relaxation parameter for solving the linearized transport matrix 
equation pointwisely or blockwisely; 

a. 0.0 - 1.0 = under-relaxation. 

b. 1.0 - 1.0 = exact relaxation. 

c. 1.0 - 2.0 = over-relaxation. 

Line 6 

This line is needed if and only if IPNTSf or IPNTSt is greater than 0. 

IEIGEN = signal of parameter estimation for GG in the polynomial 
preconditioned conjugate gradient method: 

a. Zero = not requested. 

b. Non-zero = requested. 

GG = the upper bound on the maximum eigenvalue of the coefficient 
matrix used in the polynomial preconditioned conjugate gradient method. 

ALPHA = weighting factor for computing the diagonal element of the 
diagonal matri :d in the modified incomplete Cholesky preconditioned 
conjugate graa method. 

OMEGA = relaxation parameter used in the SSOR PCG method. 
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Iteration Parameters 

Two subsets of free-formatted data records are required for this data set, 
one for flow simulations, the other for transport simulations. 

Subset 1 : For flow simulations 

NITERf = Number of iterations allowed for solving the nonlinear flow 
equation. 

NCYLf = Number of cycles permitted for iterating rainfall-seepage 
boundary conditions per time-step. 

NPITERf = Number of iterations permitted for solving the linearized flow 
equation using block or pointwise iterative matrix solver. 

TOLAf = Steady-state convergence criteria for flow simulations, (L). 

TOLBf = Transient-state convergence criteria for flow simulations, (L). 

Subset 2: For transport simulations 

NITERt = Number of iterations allowed for solving the nonlinear 
transport equation. 

NPITERt = Number of iterations for block or pointwise solution to solve 
the linearized transport equation. 

TOLAt = Steady-state convergence criteria for transport simulations. 

TOLBt = Transient-state convergence criteria for transport simulations. 

Time Control Parameters 

Five subsets of data records are required for this data set. 

Subset 1 : free format 

NTI = Number of time-steps or time increments. 

NDTCHG = Number of times to reset time-step s i  ~o initial time-step 
size. 
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Subset 2: free format 

DELT = Initial time-step size, (T). 

CHNG = Percentage of change in time-step size in each of the subsequent 
time increments (dimensionless in decimal point). 

DELMAX = Maximum value of DELT, (T) 

TMAX = Maximum simulation time, (T). 

Subset 3: format = 8011 

KPRO = Printer control for steady-state and initial conditions 

a. 0 = print nothing. 

b. 1 = print FLOW, FRATE, and TFLOW. 

c. 2 = print above (1) plus pressure head H. 

d. 3 = print above (2) plus total head. 

e.  4 = print above (3) plus moisture content. 

f. 5 = print above (4) plus Darcy velocity. 

KPR(I) = Printer control for the I" (I = 1, 2, . . . , NTI) time-step similar 
to KPRO. 

Subset 4: format = 8011 

KDSKO = Auxiliary storage control for steady-state and initial condition; 
0 = no storage, 1 = store on Logical Unit 1. 

KDSK(I) = Auxiliary storage control for the P (I = 1, 2, . . . , NTI) time- 
step similar to KDSKO. 

Subset 5: free format 

TDTCH(I) = Time when the I~ (I = 1, 2, . . . , NDTCHG) 
step-size-resetting is needed. 

NOTE: NTI can be computed by NTI = I1 + I + I2 + 1, where I1 = 
largest integer not exceeding Log(DELMAX/DELT)/Log(l +CHNG), 
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I2 = largest integer not exceeding (RTIME-DELT*((l +CHNG)** 
(I1 + 1)-l)/CHNG)/DELMAX, RTIME = real simulation time, DELMAX, 
DELT,and CHNG are defined in Data Set 3. 

Material Properties 

Four subsets of free-formatted data records are required for this data set. 

Subset 1 : 

NMAT = Number of material types. 

NMPPM = Number of material properties per material = 8 for the 
present version. 

nrmp = Number of constants for computing RHO (fluid density) and MU 
(fluid dynamic viscosity) as function of concentration. 

Subset 2: 

A total of NMAT records are needed per problem, one each for one 
material. 

PROPf(1,I) = Saturated xx-conductivity or permeability of the medium I, 
(LIT or L**2). 

PROPf(1,I) = Saturated yy-conductivity or permeability of the medium I, 
(LIT or L**2). 

PROPf(1,I) = Saturated zz-conductivity or permeability of the medium I, 
(LIT or L**2). 

PROPf(1,I) = Saturated xy-conductivity or permeability of the medium I, 
(LIT or L**2). 

PROPf(1,I) = Saturated xz-conductivity or permeability of the medium I, 
(LIT or L**2). 

PROPf(1,I) = Saturated yz-conductivity or permeability of the medium I, 
(LIT or L**2). 

Subset 3: 

Parameters a,, a,, . . . , a, used in Equations 2.2b and 2 . 2 ~ .  
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RHOMU(1..4) = Coefficients for calculating fluid density as function of 
concentration. The default setting is four coefficients. 

RHOMU(S..nrmp) = Coefficients for calculating fluid dynamic viscosity 
as function of concentration. 

Subset 4: 

A total of NMAT records are needed per problem, one each for one 
material. 

PROPt(1,I) = Distribution coefficient (L**3/M) or Freundlich K or 
Langmuir K for medium I. 

PROPt(2,I) = Bulk density, (M/L**3) for medium I. 

PROPt(3,I) = Longitudinal dispersivity, (L), for medium I. 

PROPt(4,I) = Lateral dispersivity, (L), for medium I. 

PROPt(5,I) = Molecular diffusion coefficient, (L**2/T), for medium I. 

PROPt(6,I) = Tortuosity (Dimensionless) for medium I. 

PROPt(7,I) = Decay constant, (1IL) in medium I. 

PROPt(8,I) = Freundlich N or Langmuir SMAX for medium I. 

Soil Properties 

Three or five subsets of free-formatted data records are required for this 
data set depending on the forms of the soil property functions given. 

Subset 1 : Soil property control parameters 

KSP = Soil property input control. 

a. 0 = analytical input. 

b. 1 = tabular data input. 

NSPPM = Number of points in tabular soil property functions or number 
of parameters to specify analytical soil functions per material. 

KCP = Permeability input control. 
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a. 0 = input saturated hydraulic conductivity 

b. 1 = input saturated permeability. 

RHO = Referenced density of water, (M/L**3). 

GRAV = Acceleration of gravity, (LlT**2). 

VISC = Referenced dynamic viscosity of water, (MILIT). 

Subset 2a: Analytical soil parameters 

This data subset is needed if and only if KSP is not 0. Two sets of records 
are required, one for moisture-content parameters and the other for 
conductivity (permeability) parameters. 

SPP(J,I,l) = Analytical moisture-content parameter J of material I, 
J = 1. .NSPPM. NMAT sets of these parameters are required for I = 
1. .NMAT. That is, if SPP(J,I, 1) for J = 1. .NSPPM can be put on a single 
line, we need NMAT consecutive lines for the sets of parameters. 

SPP(J,1,2) = Analytical relative conductivity parameter J of material I. 
Similar input data setting is required for these parameters as for SPP(J,I, 1) 

Subset 2b: Soil properties in tabular form 

This data subset is needed if and only if KSP is 0. Four sets of records 
are needed: pressure, water content, reiative conductivity (or relative 
permeability), and water capacity, respectively. 

SPP(J,I,4) = Tabular value of pressure head of the P point for material I. 
NMAT sets of these parameters are required for I = 1. .NMAT. That is, if 
SPP(J,I,4) for J = 1. .NSPPM can be put on a single line, we need NMAT 
consecutive line for the sets of parameters. 

SPP(J,I,I) = Tabular value of moisture content of the J" point in material 
I. Similar input data setting is required for these parameters as for 
SPP(J,I,4). 

SPP(J,I,2) = Tabular value of relative conductivity of the J" point in 
material I. Similar input data setting is required for these parameters as for 
SPP(J,I,4). 

SPP(J,I,3) = Tabular value of moisture content capacity of the J" point in 
material I. Similar input data setting is required for these parameters as for 
SPP(J,1,4) 
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Nodal Coordinate 

Two subsets of free-formatted data records are required. 

Subset 1: 

NNP = Number of nodes. 

Subset 2: nodal coordinates 

Coordinates for NNP nodes are needed if KVI .LE. 0. Usually a total of 
NNP records (KVI records) are required. However, if a group of subsequent 
nodes appear in regular pattern, automatic generation can be made. Each 
record contains the following variables and is FREE-FORMATTED. 

NI = Node number of the first node in the sequence. 

NSEQ = NSEQ subsequent nodes will be automatically generated. 

NAD = Increment of node number for each of the NSEQ subsequent 
nodes. 

XNI = x-coordinate of node NI, (L). 

YNI = y-coordinate of node NI, (L). 

ZNI = z-coordinate of node NI, (L). 

XAD = Increment of x-coordinate for each of the NSEQ subsequent 
nodes, (L). 

YAD = Increment of y-coordinate for each of the NSEQ subsequent 
nodes, (L). 

ZAD = Increment of z-coordinate for each of the NSEQ subsequent 
nodes, (L). 

NOTE: A record with nine 0's must be used to signal the end of this data 
set. 

Subregion Data 

This data set is not required if both or eitllcr IPNTSf and IPNTSt is 0.  
Three subsets of free-formatted data records are required. 
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Subset 1 : 

One free-format data record is needed for this data subset. 

NREGN = Number of subregions 

Subset 2: Number of nodes for each subregion 

Normally, NREGN records are required. However, if regular pattern 
appears, automatic generation can be made. Each record contains the five 
variables and is FREE-FORMATTED. 

NK = Subregion number of the first subregion region in a sequence. 

NSEQ = NSEQ subsequent subregions will have their number of nodes 
automatically generated. 

NKAD = Increment of NK in each of the NSEQ subsequent subregions. 

NODES = Number of nodes for the subregion NK. 

NOAD = Increment of NODES in each of the NSEQ subsequent 
subregions. 

NOTE: A record with five 0's must be used to end the input of this data 
subset. 

Subset 3: Mapping between global nodes and subregion nodes 

This data subset should be repeated NREGN times, one for each 
subregion. For each subregion, normally, LNNP records are needed. 
However, automatic generation can be made if subregional node number 
appears in regular pattern. Each record contains five variables and is FREE- 
FORMATTED. 

LI = Local node number of the first node in a sequence. 

NSEQ = NSEQ subsequent local nodes will be generated automatically. 

LIAD = Increment of LI for each of the NSEQ subsequent nodes. 

NI = Global node number of local node LI 

NIAD = Increment o '4 for each of the NSEQ subsequent nodes 

NOTE: A record with five 0's must be used to signal the end of this data 
subset. 
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Element Data 

Two subsets of free-formatted data records are required for this data set. 

Subset 1 

NEL = Number of elements. 

Subset 2 

Element incidences for NEL elements are needed if KVI .LE. 0. Usually, 
a total of NEL records is needed. However, if a group of elements appear in 
regular pattern, automatic generation is made. Each record contains the 
following variables and is FREE-FORMATTED. 

MI = Global element number of the first element in a sequence. 

NSEQ = NSEQ subsequent elements will be automatically generated. 

MIAD = Increment of MI for each of the NSEQ subsequent elements. 

IE(M1,l) = Global node number of the first node of element MI. 

IE(MI,2) = Global node number of the second node of element MI. 

IE(M1,3) = Global node number of the third node of element MI. 

IE(MI,4) = Global node number of the fourth node of element MI. 

IE(MI,5) = Global node number of the fifth node of element MI. 

IE(MI,6) = Global node number of the sixth node of element MI. 

IE(MI,7) = Global node number of the seventh node of element MI. 

IE(MI,8) = Global node number of the eighth node of element MI. 

IEMAD = Increment of IE(M1,l) through IE(MI,8) for each of the NSEQ 
elements. 

NOTE: IE(M1,l)-IE(MI,8) are numbered according the convention shown 
in Figure C. 1. The first four nodes start from the front lower left corner and 
progress around the bottom element surface in a counterclockwise direction. 
The other four nodes begin from the front upper left corner and progress 
around the top element surface in a counterclockwise direction. 
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Material Type Correction 

Two subsets of free-formatted data records are required for this data set. 

Subset 1 

NCM = Number of elements with material corrections. 

Subset 2 

This set of data records is required only if NCM > 0. Normally, NCM 
records are required. However, if a group of elements appear in regular 
pattern, automatic generation may be made. Each record contains the 
following variables. 

MI = Global element number of the first element in the sequence. 

NSEQ = NSEQ subsequent elements will be generated automatically. 

MAD = Increment of element number for each of the NSEQ subsequent 
elements. 

MITYP = Type of material correction for element MI. 

MTYPAD = Increment of MITYP for each of the NSEQ subsequent 
elements. 

NOTE: A line with five 0's must be used to signal the end of this data 
set. 

Card lnput for Initial or Pre-Initial Conditions 

Two subsets of free-formatted data records re required for this data set, 
one for initial preccure head, the other for i n i ~ ; ~ ~  concentration. Generally, 
for each subset N;h1 record, one record for each node is needed. However, 
if a group of nodes appear in regular pattern, autogeneration is made. 

Subset 1 : Initial pressure head 

Each record contains the following varizbles. This subset is needed if 
IMOD = 10 or IMOD = 11. 

NI = Global node number of the first node in the s-3quence. 

NSEQ = NSEQ subsequent nodes will be generated automatically. 
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NAD = Increment of node number for each of the NSEQ nodes. 

HNI = Initial or pre-initial pressure head of node NI, (L). 

HAD = Increment of initial or pre-initial head for each of the NSEQ 
nodes, (L). 

HRD = 0.0 

NOTE: A line with six 0's must be used to signal the end of this data set. 

NOTE ON INITIAL CONDITIONS AND RESTARTING: The initial 
condition for a transient calculation may be obtained in two different ways: 
from card input or steady-state calculation using time-invariant boundary 
conditions that are different from those for transient computation. In the latter 
case a card input of the pre-initial conditions is required as the zeroth order 
iterate of the steady-state solution. 

NOTE ON STEADY-STATE INPUT: Steady-state option may be used to 
provide either the final state of a system under study or the initial conditions 
for a transient state calculation. In the former case KSSf = 0, KSSt = 0, and 
NTI = 0, and in the latter case KSSf = 0 or KSSt = 0 and NTI > 0. If 
KSSf > 0 and KSSt > 0, there will be no steady-state calculation. 

Subset 2: Initial concentration 

Each record contains the following variables. This subset is needed if 
IMOD = 1 or IMOD = 11. 

NI = Global node number of the first node in the sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically. 

NAD = Increment of node number for each of the NSEQ nodes. 

CNI = Initial or pre-initial concentration of node NI, (M/L**3). 

CAD = Increment of CNI for each of the NSEQ nodes, (M/L**3). 

CRD = Geometrical increment of CNI for each of the NSEQ subsequent 
nodes. 

NOTE: A record with six 0's must be used to signal the end of this data 
set. 

NOTE ON INITIAL CONDITIONS: The initial condition for a transient 
calculation may be obtained in two different ways: from card input or 
steady-state calculation using rime-invariant boundary conditions that are 
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different from those for transient computation. In the latter case a card input 
of the pre-initial conditions is required as the zeroth order iterate of the 
steady-state solution. 

NOTE ON STEADY-STATE INPUT: Steady-state option may be used to 
provide either the final state of a system under study or the initial conditions 
for a transient state calculation. In the former case KSS = 0 and NTI = 0, 
and in the latter case KSS = 0 and NTI .GT. 0. If KSS .GT. 0, there will be 
no steady-state calculation. 

Element (Distributed) SourcelSink for Flow 
Simulations 

This data set is needed if IMOD = 10 or IMOD = 11. Four subsets of 
free-formatted data records are required in this data set. 

Subset 1 : control parameters 

NSEL = Number of sourcelsink elements. 

NSPR = Number of sourcelsink profiles. 

NSDP = Number of data points in each of the NSPR sourcelsink profiles. 

KSAI = Is element-source/sink profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: sourcelsink profiles 

This group of data is needed if and only if NSEL .GT. 0. For each data 
subset record, NSDP of the data pair (TSOSF(J,I),SOSF(J,I)) is required. If 
this data subset record can be fitted in a line. we will need NSPR lines. 

TSOSF(J,I) = Time of the J" data point in the profile, (T). 

SOSF(1,I) = Sourcelsink value of the J" data point in the I" profile, 
(L**3/T/L**2/L). 
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Subset 3: global sourcelsink element number 

This group of data is needed if and only if NSEL .GT. 0. NSEL data 
points are required for this record. 

MSEL(1) = Global element number of the I" compressed distributed 
source/sink element. 

Subset 4: Source type assigned to each element 

Usually one record per element. However, automatic generation can be 
made. For I" (I = 1, 2, ...,) record, it contains the following. 

MI = Global element number of the first element in the sequence. 

NSEQ = NSEQ elements will be generated automatically. 

MAD = Increment of element number for each of the NSEQ elements. 

MITYP = Source type in element MI. 

MTYPAD = Increment of MITYP for each of the NSEQ elements. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Point (Well) SourcelSink Data for Flow Simulation 

This data set is needed if IMOD = 10 or IMOD = 11. Four subsets of 
free-formatted data records are required for this data set. 

Subset 1 : control parameters 

NWNP = Number of well or point source/sink nodal points. 

NWPR = Number of well or point source/sink strength profiles. 

NWDP = Number of data points in each of the NWPR profiles. 

KWAI = Is well-source/sink profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 
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Subset 2: sourcelsink profiles 

This group of data is needed if and only if NWNP .GT. 0. For each data 
subset record, NWDP of the data pair (TWSSF(J,I),WSSF(J,I)) are required. 
If this data subset record can be fitted in a line, we will need NWPR lines. 

TWSSF(J,I) = Time of the J" data point in the I" profile, (T). 

WSSF(J,I) = Source/sink value of the J" data point in the I? profile, 
(LX*3/T/L). 

Subset 3: global sourcelsink element number 

This group of data is needed if and only if NWNP .GT. 0. NWNP data 
points are required for this record. 

NPW(1) = Global node number of the I" compressed well source/sink 
node. 

Subset 4: Source type assigned to each well 

Usually one record per element. However, automatic generation can be 
made. For I" (I = 1, 2, ...,) record, it contains the following. 

NI = Compressed well node number of the first node in the sequence. 

NSEQ = NSEQ nodes will be generated automatically. 

NAD = Increment of well node number for each of the NSEQ nodes. 

NITYP = Source type in node NI. 

NTYPAD = Increment of NITYP for each of the NSEQ nodes. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Element (Distributed) SourceISink for Transport 
Simulations 

This data set is needed if IMOD = 1 or IMOD = 11. Four subsets of 
free-formatted data records are required in this data set. 
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Subset 1 : control parameters 

NSEL = Number of sourcelsink elements. 

NSPR = Number of source profiles, should be .GE. I .  

NSDP = Number of data points in each profile, should be .GE. 2 

KSAI = Is element-sourcelsink profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Record subset 2: sourcelsink profile 

This data subset is needed if and only if NSEL .GT. 0. For each data 
subset record, NSDP of the data group (TSOSF(J,I),SOSF(J,I, l),SOSF(J,I,2)) 
are required. If this data subset record can be fitted in a line, we will need 
NSPR lines. 

TSOSF(J,I) = Time of J" data point in I" profile, (T). 

SOSF(J,I,l) = Sourcelsink flow rate of the J" data point in the I' profile, 
(L**3/T/L**3); positive for source and negative for sink. 

SOSF(J,I,2) = Sourcelsink concentration of the J" data point in the I" 
profile, (M/L**3). 

Subset 3: global sourcelsink element number 

NSEL data points are required for this record. 

LES(I) = Global element number of the I" compressed distributed 
sourcelsink element. 

Subset 4: Source type assigned to each element 

Usually one record per element. However, automatic generation can be 
made. For I" (I = 1, 2, . . .,) record, it contains the following. 

MI = Global element number of the first element in the sequence. 

NSEQ = NSEQ elements will be generated automatically. 

MAD = Increment of element number for each of the NSEQ elements. 
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MITYP = Source type in element MI. 

MTYPAD = Increment of MITYP for each of the NSEQ elements. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Point (Well) Sourcelsink Data for Transport 
Simulation 

This data set is needed if IMOD = 1 or IMOD = 11. Four subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NWNP = Number of well or point sourcelsink nodes. 

NWPR = Number of well or point sourcelsink strength profiles. 

NWDP = Number of data points in each of the NWPR profiles. 

KWAI = Is well-sourcelsink profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: sourcelsink profiles 

This group of data is needed if and only if NWNP .GT. 0. For each data 
subset record, NWDP of the data group (TWSSF(J,I),WSSF(J,I, l),WSSF (J, 
I,2)) are required. If this data subset record can be fitted in a line, we will 
need NWPR lines. 

TWSSF(J,I) = Time of J" data point in I" profile, (T). 

WSSF(J,I,l) = Sourcelsink flow rate of the J" data point in the Ia profile, 
(L**3/T/L**3); positive for source and negative for sink. 

WSSF(J,I,2) = Sourcelsink concentration of the J" data point in the I" 
profile, (M/L**3). 

Subset 3: global sourcelsink element number 

This group of data is needed if and only if NWNP .GT. 0. NWNP data 
points are required for this record. 
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NPW(1) = Global node number of the I" compressed point sourcelsink 
node. 

Subset 4: Source type assigned to each well 

Usually one record per element. However, automatic generation can be 
made. 

NI = Compressed point sourcelsink node number of the first node in a 
sequence. 

NSEQ = NSEQ nodes will contain the source types that will be 
automatically generated. 

NIAD = Increment of NI for each of the NSEQ nodes. 

NITYP = Source type in node NI. 

NTYPAD = Increment of NITYP for each of the NSEQ subsequent 
nodes. 

NOTE: A record with five 0's must be used to signal the end of this data 
set. 

RainfalllEvaporation-Seepage Boundary Conditions 

This data set is needed if IMOD = 10 or IMOD = 11. Seven subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NVES = Number of variable boundary element sides. 

NVNP = Number of variable boundary nodal points. 

NRPR = Number of rainfall profiles. 

NRDP = Number of rainfall data points in each of the NRPR rainfall 
profiles. 

KRAI = Is rainfall profile to be input analytically, 

a. 0 = no. 

b. 1 = yes. 
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Subset 2: boundary profiles 

This subset is required only when NVES is not 0. NRPR profiles are 
needed. For each profile, NRDP of the data pair (TRF(J,I),RF(J,I)) are 
required. If these data pairs can fit in a line, we will need NRPR of data 
lines. 

TRF(J,I) = Time of the J'" data point in the I" profile, (T). 

RF(J,I) = Rainfall/evaporation rate of the J' data point in the I" profile, 
(LIT). 

Subset 3: boundary profile types assigned to each element 

At most, NVES records are needed. However, automatic generation can 
be made. For I" (I = 1, 2, . . . ,) record, it contains the following variables. 

MI = Compressed VB element side of the first side in the sequence. 

NSEQ = NSEQ sides will be generated automatically. 

MIAD = Increment of NI for each of the NSEQ sides. 

MITYP = Type of rainfall/evaporation profiles assigned to side MI. 

MTYPAD = Increment of MITYP for each of the NSEQ sides 

NOTE: A line with five 0's is used to signal the end of this data set. 

Subset 4: Specification of rainfalllevaporation-seepage sides 

Normally, NVES records are required, one each for a variable boundary 
(VB) element side. However, if a group of rainfall/evaporation-seepage 
element sides appears in a regular pattern, automatic generation may be made. 
For I-th (I = 1, 2, . . ., ) record, it contains the following variables. 

MI = Compressed VB element side number of the first element side in a 
sequence. 

NSEQ = NSEQ subsequent VB element sides will be generated 
automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent VB element 
sides. 

I1 = Global node number of the first node of element side MI. 
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I2 = Global node number of the second node of element side MI. 

I3 = Global node number of the third node of element side MI. 

I4 = Global node number of the fourth node of element side MI. 

IlAD = Increment of I1 for each of the NSEQ subsequent VB element 
sides. 

I2AD = Increment of I2 for each of the NSEQ subsequent VB element 
sides. 

I3AD = Increment of 13 for each of the NSEQ subsequent VB element 
sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent VB element 
sides. 

NOTE: A blank with eleven 0's must be used to signal the end of this 
data subset. 

Subset 5: Global Node Number of All Compressed Variable Boundary 
(VB) Nodes. 

At most, NVNP records are needed for this data subset, one each for 
NVNP variable boundary nodes. For I" (I = 1, 2, . . . , ) record, it contains 
the following five variables. 

NI = Compressed VB node number of the first node in the sequence. 

NSEQ = NSEQ nodes will be generated automatically. 

NIAD = Increment of NI for each of the NSEQ nodes. 

NODE = Global node number of node NI. 

NODEAD = Increment of NODE for each of the NSEQ nodes. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Subset 6: Ponding Depth Allowed in Each of NVNP Variable 
Boundary Nodes 

Normally, NVNP records are needed, one for each of the NVNP nodes. 
However, if a group of nodes has a regular pattern of ponding depth, 
automatic generation is made. For Ia (I = 1, 2, . . . , ) record, it contains the 
following variables. 
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NI = Compressed VB node number of the first node in a sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically 

NIAD = Increment of NI for each of the NSEQ subsequent nodes. 

HCONNI = Ponding depth of node NI, (L) 

HCONAD = Increment of HCONNI for each of the NSEQ nodes, (L). 

NOTE: A line with five 0's must be used to signal the end of this data 
subset. 

Subset 7 :  Minimum Pressure Head Allowed in Each NVNP Variable 
Boundary Nodes 

This data subset is read in similar to the above data subset. For I" (I = 1, 
2, . . . , ) record, it contains the following variables. 

NI = Compressed VB node number of the first node in a sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically. 

NIAD = Increment of NI for each of the NSEQ subsequent nodes. 

HMINNI = Minimum pressure head allow for node NI, (L). 

HMINAD = Increment of HMINNI for each of the NSEQ nodes, (L). 

NOTE: A line with five 0's must be used to signal the end of this data 
subset. 

Dirichlet Boundary Conditions for Flow Simulation 

This data set is needed if IMOD = 10 or IMOD = 11. Four subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NDNP = Number of Dirichlet nodal points, should be .GE. 1. 

NDPR = Number of total Dirichlet-head profiles, should be .GE. 1. 

NDDP = Number of data points in each total head profile, should be 
.GE. I .  
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KDAI = Is Dirichlet boundary value profile to be input analytically? 

a. 0 = no. 

b. 1 = yes 

Subset 2: Dirichlet-head profiles 

This data subset is required only if NDNP is not 0. NDPR of profiles are 
2eded. For each profile, NDDP of the data pair (THDBF(J,I),HDBF(J,I)) 

are needed. If' these data pairs can fit in a line, we will need NDPR lines. 

THDBF(J,I) = Time of the J" data point in the profile, (T). 

HDBF(J,I) = Total head of the J" data point in the I" profile, (L). 

Subset 3: Dirichlet nodes 

One record is needed for this data subset. The number of lines in this 
record depends on NDNP. 

NPDB(1) = Global node number of the I" compressed Dirichlet node. 

Subset 4: boundary profile type assigned to each Dirichlet node 

Normally one record per Dirichlet node, i.e., a total of NDNP records. 
However, if the Dirichlet nodes appear in regular pattern, automatic 
generation may be made. For I" (I = 1, 2, . . . , ) record, it contains the 
following variables. 

M = Compressed Dirichlet node number of the first node in the sequence. 

NSEQ = NSEQ subsequent Dirichlet nodes will be generated 
automatically. 

NAD = Increment of NI for each of the NSEQ nodes. 

NITYP = Type of total head profile for node NI and NSEQ subsequent 
nodes. 

NTYPAD = Increment of NITYP for each of the NSEQ subsequent 
nodes. 

NOTE: A line with five 0's must be used to signal the end of this data 
subset. 
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Cauchy Boundary Conditions for Flow Simulations 

This data set is needed if IMOD = 10 or IMOD = 11. Five subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NCES = Number of Cauchy boundary element sides. 

NCNP = Number of Cauchy nodal points. 

NCPR = Number of Cauchy-flux profiles. 

NCDP = Number of data points in each of the NCPR Cauchy-flux 
profiles. 

KCAI = Is Cauchy flux profile to be input analytically? 

a. 0 = no. 

b. 1 = yes 

Subset 2: prescribed Cauchy-flux profiles 

This data subset is required only if NCES is not 0. NCPR of profiles is 
needed. For each profile, NCDP of the data pair (TQCBF(J,I),QCBF(J,I)) is 
needed. If these data pairs can fit in a line, we will need NDPR lines. 

TQCBF(J,I) = Time of the J" data point in the I" profile, (T). 

QCBF(J,I) = Normal Cauchy flux of the J" data point in the I" profile, 
(L**3/T/L**2); positive out from the region, negative into the region. 

Subset 3: type of Cauchy flux profiles assigned to each of all NCES 
sides 

At most, NCES records are needed. However, automatic generation can 
be made. For I" (I = 1, 2, . . . , ) record, it contains the following variables. 

MI = Compressed Cauchy side number of the first side in the sequence. 

NSEQ = NSEQ sides will be generated automatically. 

MIAD = Increment of M for each of the NSEQ sides. 

MITYP = Type of Cauchy flux profile assigned to side MI. 
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MTYPAD = Increment of MITYP for each of the NSEQ sides. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Record subset 4: Cauchy boundary element sides 

Normally, NCES records are required, one each for a Cauchy boundary 
element side. However, if a group of Cauchy boundary element sides appears 
in a regular pattern, automatic generation may be made. For I" (I = 1, 2, 
. . . , ) record, it contains the following variables. 

MI = Compressed Cauchy element side number of the first element side in 
a sequence. 

NSEQ = NSEQ subsequent Cauchy element sides will be generated 
automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent sides. 

I1 = Global node number of the first node on the Cauchy element side 
MI. 

I2 = Global node number of the second node on the Cauchy element side 
MI. 

I3 = Global node number of the third node on the Cauchy element side 
MI. 

I4 = Global node number of the fourth node on the Cauchy element side 
MI. 

I:.JI = Increment of I1 for each of the NSEQ subsequent element sides. 

I2AD = Increment of I2 for each of the NSEQ subsequent element sides. 

I3AD = Increment of I3 for each of the NSEQ subsequent element sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent element sides. 

NOTE: A line with eleven 0's is used to end this data set input. 

Subset 5: global node number of all compressed Cauchy nodes 

At most, NCNP records are needed for this data subset, one each for 
NCNP Cauchy nodes. 

NPCB(1) = Global node number of the I" compressed Cauchy nodes. 
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Neumann Boundary Conditions for Flow 
Simulations 

This data set is needed if IMOD = 10 or IMOD = 11. Five subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NNES = Number of Neumann boundary element sides. 

NNNP = Number of Neumann nodal points. 

NNPR = Number of Neumann flux profiles. 

NNDP = Number of data points in each of the NNPR Neumann flux 
profiles. 

KNAI = Is Neumann flux profile to be input analytically? 

a. 0 = no. 

b. 1 = yes 

Subset 2: prescribed Neumann-flux profiles 

This data subset is required only if NNES is not 0. NNPR of profiles is 
needed. For each profile, NNDP of the data pair (TQNBF(J,I),QNBF(J,I)) is 
needed. If these data pairs can fit in a line, we will need NDPR lines. 

TQNBF(J,I) = Time of the J" data point in the I" profile, (T). 

QNBF(J,I) = Normal Neumann flux of the J" data point in the I" profile, 
(L**3/T/L**2); positive out from the region, negative into the region. 

Subset 3: type of Neumann flux profiles assigned to each of all 
NNES sides 

At most, NNES records are needed. However, automatic generation can 
be made. For I" (I = 1, 2, . . . , ) record, it contains the following variables. 

MI = Compressed Neumann side number of the first side in the sequence. 

NSEQ = NSEQ sides will be generated automatically. 

MIAD = Increment of MI for each of the NSEQ sides. 
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MITYP = Type of Neumann flux profile assigned to side MI. 

MTYPAD = Increment of MITYP for each of the NSEQ sides. 

NOTE: A line with five 0's is used to signal the end of this data set. 

Subset 4: Neumann boundary element sides 

Normally, NNES records are required, one each for a Neumann boundary 
element side. However, if a group of Neumam boundary element sides 
appears in a regular pattern, automatic generation may be made. For I" (I = 
1, 2 ,  . . . , ) record, it contains the following variables. 

MI = Compressed Neumann side number of the first side in sequence. 

NSEQ = NSEQ subsequent Neumann sides will be generated 
automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent sides. 

I1 = Global node number of the first node on the Neumann element side 
MI. 

I2 = Global node number of the second node on Neumann element side 
MI. 

I3 = Global node number of the third node on the Neumann element side 
MI. 

I4 = Global node number of the fourth node on the Neumann element side 
MI. 

IlAD = Increment of I1 for each of the NSEQ subsequent element sides. 

I2AD = Increment of I2 for each of the NSEQ subsequent element sides. 

I3AD = Increment of I3 for each of the NSEQ subsequent element sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent element sides. 

NOTE: A line with eleven 0's is used to end this data set input. 

Subset 5: global node number of all compressed Neumann nodes 

At most, NNNP records are needed for this data subset, one each for 
NNNP Neumann nodes. 
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NPNB(1) = Global node number of the I" compressed Neumann nodes. 

Run-InIFlow-Out ( V a r i a b l e )  Boundary Conditions for 
Transport Simulations 

This data set is needed if IMOD = 1 or IMOD = 11. Five subsets of data 
records are required for this data set. 

Subset 1 : control parameters 

NVES = Number of variable boundary element sides. 

NVNP = Number of variable boundary nodal points. 

NRPR = Number of incoming fluid concentration profiles to be applied to 
variable boundary element sides. 

NRDP = Number of data points in each of the NRPR profiles. 

KRAI = Is incoming concentration profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: variable boundary flux profile 

NRPR records are needed. Each record contains NRDP data points and is 
FREE-FORMATTED. Each data point has two numbers representing the 
time and run-intflow-out concentrations, respectively, as follows: 

TCRSF(J,I) = Time of the J" data point on the I" run-in concentration 
profile, (T). 

CRSF(J,I) = Concentration of the J" data point on the I" profile, 
(M/L**3). 

Subset 3: Run-in concentration type assigned to each of all NVES 
sides 

Usually one record per variable element side. However, automatic 
generation can be made. Each record contains five variables and is FREE- 
FORMATTED. 

MI = Compressed VB element side of the first side in a sequence. 
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NSEQ = NSEQ subsequent sides will be generated automatically. 

MIAD = Increment of MI for each of NSEQ subsequent sides. 

MITYP = Type of concentration profile assigned to side MI. 

MTYPAD = Increment of MITYP for each of the NSEQ subsequent 
sides. 

NOTE: A record with five 0's must be used to signal the end of this data 
subset. 

Subset 4: Specification of run-in boundary element sides 

Normally, NVES records are required, one each for a VB element side. 
However, if a group of VB element sides appears in a regular pattern, 
automatic generation may be made. Each record contains 11 variables and is 
FREE-FORMATTED . 

MI = Compressed VB element side number of the first side in a sequence. 

NSEQ = NSEQ subsequent VB element sides will be generated 
automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent VB element 
sides. 

I1 = Global node number of the first node of element side MI. 

I2 = Global node number of the second node of element side MI. 

I3 = Global node number of the third node of element side MI. 

I4 = Global node number of the fourth node of element side MI 

IlAD = Increment of I1 for each of the NSEQ subsequent element sides. 

12AD = Increment of I2 for each of the NSEQ subsequent element sides. 

I3AD = Increment of I3 for each of the NSEQ subsequent element sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent element sides. 

NOTE: A record with eleven 0's is used to signal the end of this data 
subset. 
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Subset 5: global nodal number of all run-inlflow-out boundary nodes 

Usually NVNP records are needed for this data subset. However, automatic 
generation can be made. Each record contains five variables and is FREE- 
FORMATTED. 

NI = Compressed VB node number of the first node in a sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically. 

NIAD = Increment for NI for each of the NSEQ nodes. 

NODE = Global nodal number of the node N1. 

NODEAD = Increment of NODE for each of the NSEQ subsequent 
nodes. 

NOTE: A record with five 0's is used to signal end of this data subset. 

Dirichlet Boundary Conditions for Transport 
Simulations 

This data set is needed if IMOD = 1 or IMOD = 11. Four subsets of 
data records are required for this data set. 

Subset 1 : control parameters 

NDNP = Number of Dirichlet nodes, should be .GE. 1 

NDPR = Number of Dirichlet profiles, should be .GE. 1. 

NDDP = Number of data points in each profile, should be .GE. 2. 

KDAI = Is Dirichlet boundary value profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: Dirichlet concentration profiles 

NDPR records are needed. Each record contains NDDP data points and 
is FREE-FORMATTED. Each data point has two numbers representing the 
time and Dirichlet concentrations, respectively, as follows: 
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TCDBF(J,I) = Time of J" data point in I" Dirichlet-concentration profile, 
(TI. 

CDBF(J,I) = Concentration of J" data point in P Dirichlet concentration 
profile, (M/L**3). 

Subset 3: global node number of compressed Dirichlet nodes 

One record is needed for this data subset, which contains NDNP variables 
and is FREE-FORMATTED . 

NPDB(1) = Global node number of the I" compressed Dirichlet node. 

Subset 4: Dirichlet concentration types assigned to Dirichlet nodes 

Normally one record per Dirichlet node, i.e., a total of NDNP records, is 
needed. However, if the Dirichlet nodes appear in regular pattern, automatic 
generation may be made. Each record contains five variables and is FREE- 
FORMATTED. 

NI = Compressed Dirichlet node number of the first node in the sequence. 

NSEQ = NSEQ nodes will contain the Dirichlet concentration types that 
will be automatically generated. 

NIAD = Increment of NI for each of the NSEQ nodes. 

NITYP = Dirichlet concentration type in node NI. 

NTYPAD = Increment of NITYP for each of the NSEQ subsequent 
nodes. 

NOTE: A record with five 0's must be used to signal the end of this data 
set. 

Cauchy Boundary Conditions for Transport 
Simulation 

This data set is needed if IMOD = 1 or IMOD = 11. Five subsets of data 
records are required for this data set. 

Subset 1 : control parameters 

NCES = Number of Cauchy element sides. 
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NCNP = Number of Cauchy nodal points. 

NCPR = Number of Cauchy-flux profiles. 

NCDP = Number of data points on each Cauchy-flux profile. 

KCAI = Is Cauchy flux profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: Cauchy flux profiles 

NCPR records are needed. Each record contains NCDP data points and 
is FREE-FORMATTED. Each data point has two numbers representing the 
time and Cauchy flux, respectively, as follows: 

TQCBF(J,I) = Time of the J" data point in the J?' Cauchy flux profile, 
(TI. 

QCBF(J,I) = Value of Cauchy flux of the J" data point in the I" Cauchy 
flux profile, (M/T/L**2). 

Subset 3: Cauchy flux type assigned to each of all NCES sides 

Usually one record per Cauchy element side. However, automatic 
generation can be made. Each record contains five variables and is FREE- 
FORMATTED. 

MI = Compressed Cauchy boundary element side of the first side in a 
sequence. 

NSEQ = NSEQ subsequent sides will be generated automatically 

MIAD = Increment of MI for each of NSEQ subsequent sides. 

MITYP = Type of Cauchy flux profile assigned to side MI. 

MTYPAD = Increment of MITYP for each of the NSEQ subsequent 
sides. 

NOTE: A record with five 0's must be used to signal the end of this data 
subset. 
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Record subset 4: specification of Cauchy boundary element sides 

Normally, NCES records are required, one each for a Cauchy boundary 
element side. However, if a group of Cauchy element sides appears in a 
regular pattern, automatic generation may be made. Each record contains 
1 1 variables and is FREE-FORMATTED. 

MI = Compressed Cauchy boundary element side number of the first 
element side in a sequence. 

NSEQ = NSEQ subsequent Cauchy boundary element sides will be 
generated automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent Cauchy 
boundary element sides. 

I1 = Global node number of the first node of element side MI. 

I2 = Global node number of the second node of element side MI. 

I3 = Global node number of the third node of element side MI. 

14 = Global node number of the fourth node of element side MI. 

IlAD = Increment of I1 for each of the NSEQ subsequent element sides. 

I2AD = Increment of I2 for each of the NSEQ subsequent element sides. 

I3AD = Increment of I3 for each of the NSEQ subsequent element sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent element sides. 

NOTE: A record with eleven 0's is used to signal the end of this data 
subset. 

Subset 5: global nodal number of all Cauchy boundary nodes 

Usually NCNP records are needed for this data subset. However, 
automatic generation can be made. Each record contains five variables and is 
FREE-FORMATTED. 

NI = Compressed Cauchy boundary node number of the first node in a 
sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically. 

NIAD = Increment for NI for each of the NSEQ nodes. 
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NODE = Global nodal number of the node NI. 

NODEAD = Increment of the global nodal number for each of the NSEQ 
subsequent nodes. 

NOTE: A record with five 0's is used to signal end of this data subset. 

Neumann Boundary Conditions for Transport 
Simulations 

This data set is needed if IMOD = 1 or IMOD = 11. Five subsets of data 
records are required for this data set. 

Subset 1 : control parameters 

NNES = Number of Neumann element sides. 

NNNP = Number of Neumann nodal points. 

NNPR = Number of Neumann flux profiles. 

MM)P = Number of data points on each Neumann flux profile. 

KSAI = Is Neumann flux profile to be input analytically? 

a. 0 = no. 

b. 1 = yes. 

Subset 2: Neumann flux profiles 

NNPR records are needed. Each record contains NNDP data points and is 
FREE-FORMATTED. Each data point has two numbers representing the 
time and Neumann flux, respectively, as follows: 

TQNBF(J,I) = Time of the J" data  joint in the I" Neumann flux profile, 
(TI. 

QNBF(J,I) = Value of Neumann 1 -.( of the J" data point in the I" 
Neumann flux profile, (M/T/L**2). 
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Subset 3: Neumann flux type assigned to each of all NNES sides 

Usually one record per Neumann element side. However, automatic 
generation can be made. Each record contains five variables and is FREE- 
FORMATTED. 

MI = Compressed Neumann boundary element side of the first side in a 
sequence. 

NSEQ = NSEQ subsequent sides will be generated automatically. 

MIAD = Increment of MI for each of NSEQ subsequent sides. 

MITYP = Type of Neumann flux profile assigned to side MI. 

MTYPAD = Increment of MITYP for each of the NSEQ subsequent 
sides. 

NOTE: A record with five 0's must be used to signal the end of this data 
subset. 

Subset 4: specification of Neumann boundary element sides 

Normally, NNES records are required, one each for a Neumann boundary 
element side. However, if a group of Neumann element sides appears in a 
regular pattern, automatic generation may be made. Each record contains 
1 1 variables and is FREE-FORMATTED . 

MI = Compressed Neumann boundary element side number of the first 
element side in a sequence. 

NSEQ = NSEQ subsequent Neumann boundary element sides will be 
generated automatically. 

MIAD = Increment of MI for each of the NSEQ subsequent sides. 

I1 = Global node number of the first node of element side MI. 

I2 = Global node number of the second node of element side MI. 

I3 = Global node number of the third node of element side MI. 

I4 = Global node number of the fourth node of element side MI 

IlAD = Increment of I1 for each of the NSEQ subsequent element sides. 

I2AD = Increment of I2 for each of the NSEQ subsequent element sides. 
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I3AD = Increment of 13 for each of the NSEQ subsequent element sides. 

I4AD = Increment of I4 for each of the NSEQ subsequent element sides. 

NOTE: A record with eleven 0's is used to signal the end of this data 
subset. 

Subset 5: global nodal number of all Neumann boundary nodes 

Usually NNNP records are needed for this data subset. However, 
automatic generation can be made. Each record contains five variables and is 
FREE-FORMATTED . 

NI = Compressed Neumann boundary node number of the first node in a 
sequence. 

NSEQ = NSEQ subsequent nodes will be generated automatically 

NIAD = Increment for NI for each of the NSEQ nodes. 

NODE = Global nodal number of the node NI. 

NODEAD = Increment of the global nodal number for each of the NSEQ 
subsequent nodes. 

NOTE: A record with five 0's is used to signal end of this data subset. 

Hydrological Variables 

This data set is needed if and only if KVI .LE. 0. When KVI .LE. 0, two 
groups of data are needed, one group for the velocity field and the other 
group for the moisture content. 

Subset 1 : velocity field 

Usually NNP records are needed. However, if velocity appears in regular 
pattern, automatic generation can be made. Each record contains nine 
variables and is FREE-FORMATTED. 

NI = Node number of the first node in a sequence. 

NSEQ = NSEQ subsequent nodes will be automatically generated. 

NIAD = Increment of node number in each of the NSEQ subsequent 
nodes. 
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VXNI = x-velocity component at node NI, (LIT). 

VYNI = y-velocity component at node NI, (LIT). 

VZNI = z-velocity component at node NI, (LIT). 

VXAD = Increment of VXNI for each of the NSEQ subsequent nodes, 
(LIT). 

VYAD = Increment of VYNI for each of the NSEQ subsequent nodes, 
(LIT). 

VZAD = Increment of VZNI for each of the NSEQ subsequent nodes, 
(LIT). 

NOTE: A record with nine 0's is used to signal the end of this data 
subset. 

Subset 2: moisture content field 

Usually, NEL records are needed. However, if moisture content appears 
in regular pattern, automatic generation can be made. Each record contains 
five variables and is FREE-FORMATTED. 

MI = Element number of the first element in a sequence. 

NSEQ = NSEQ subsequent elements will be automatically generated. 

MIAD = Increment of MI for each of NSEQ subsequent elements. 

THNI = Moisture content of element NI, (Decimal point). 

THNIAD = Increment of THNI for NSEQ subsequent elements, (Decimal 
point). 

NOTE: A record with five 0's is used to signal the end of this data subset. 

End of Job 

If another problem is to be run, then input begins again with input data 
set 1. If termination of the job is desired, a blank card must be inserted at the 
end of the data set. 
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Appendix B 
Mathematical Formulation 

Governing Equations for Flow 

From the notion for continuity of fluid, continuity of solid, consolidation 
of the media, and the equation of state (Yeh 1992),' we obtain the starting 
equation for this derivation: 

where p is the fluid density (MIL3), k is the intrinsic permeability tensor of 
the media (L2), p is the dynamic viscosity of the fluid (MILIT), p is the fluid 
pressure [(ML/T2)/L2], g is the acceleration of gravity (LIT2), z is the 
potential head (L), n, is the effective porosity (L3/L3), S is the degree of 
saturation (dimensionless), V, is the velocity of the deformable surface due to 
consolidation (LIT), is the density of the injected fluid (MIL3), q is the 
internal sourcelsink [(L3/T)/~L3], and t is the time (T). 

Expanding the right-hand side of Equation B. 1.1 

- ap an, as - Snez + pS- + np- 
at at at 

Expanding Equation B. 1.2 by the chain rule: 

(B. 1.2) 

- 

' References cited in this Appendix are included in the References at the end of the main 
text. 
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(B. 1.3) 

where C is chemical concentration (MIL3). Rearranging Equation B . l .  3,  we 
obtain: 

where the first and second terms represent the storage term, the third term is 
the density-concentration coupling term, and the fourth term is the unsaturated 
term. Substituting Equation B. 1.4 into Equation B. 1.1 : 

(B. 1.5) 

Making the first approximation by neglecting the second-order term: 

neVs .V(Sp) --- -+ 0 (B. 1.6) 

we have: 

Defining the compressibility of the fluid as: 

(B. 1.7) 
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where ,8 is the compressibility of the fluid (LT2/M). Also defining the 
moisture content as: 

8 = Sne (B. 1.9) 

where 8 is the moisture content (dimensionless). We may substitute Equations 
B. 1.8 and R.  1.9 into Equation B. 1.7 and rewrite it to obtain: 

Remembering that the continuity statement of incompressible solids is a 
compressible skeleton (Yeh 1992): 

Rearranging Equation B. 1.11 in the following form: 

Substituting Equation B. 1.12 into Equation B. 1.10, we obtain: 
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(B. 1.13) 

Recalling that the flux of solid velocity is the divergence of Vs (Yeh 
1992) : 

where a is the coefficient of consolidation of the media (LT2/M). Substituting 
Equation B . l .  14 into Equation B . l .  13 and rewriting: 

ap ap ac p(0p + S a )  + 8-- as 
+ "8- 

at ac at at 

Remembering Equation B. 1.9 and substituting: 

(B. 1.15) 

Recalling the relationship between pressure head II/ and pressure, as well as 
rewriting: 

Differentiating Equation B. 1.9 and substituting it into Equation B. 1.17, we 
obtain: 
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Making the second approximation assuming that dn, is much smaller than dS: 

Sdne - - - -+O (B. 1.19) 

we have: 

Rearranging Equation B. 1.20, we get: 

Substituting Equation B. 1.21 into Equation B. 1.16: 

Next, we need to define the reference pressure head as: 

(B. 1.20) 

(B. 1.22) 

(B. 1.23) 

where h is the reference pressure head (L) and p ,  is the reference water 
density (MIL3). From Equations B . l .  17 and B. 1.23, the relationship between 
the pressure head and referenced pressure head is 
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p,dh = P& (B. 1.24) 

where z is the elevation. 

Substituting Equations B. 1.23 and B. 1.24 into Equation B. 1.22, we obtain: 

+ ~ ' q  - 1 - (B. 1.25) 

Dividing Equation B. 1.25 by p, and rearranging, we get: 

(B. 1.26) 

Defining the modified compressibilities of the media and water as 

(R. 1.27) 

Pi = P p g  (B. 1.28) 

where a' is the modified compressibility of the media (1/L) and 6' is the 
modified compressibility of the water (l/L). Substituting Equations B. 1.27 
and B. 1.28 into Equation B. 1.26 and rearranging: 
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Defining the storage coefficient as: 

(B. 1.29) 

(B. 1.30) 

where F is the storage coefficient. Substituting Equation B. 1.30 into 
Equation B. 1.29 and following Frind (1982b) by neglecting the second term 
on the right-hand side of Equation B. 1.29, we get: 

Defining the relation: 

(B. 1.32) 

where K is the hydraulic conductivity tensor. Substituting Equation B. 1.32 
into Equation B. 1.3 1 and rearranging, we get the density-dependent flow 
equation: 

From the concept of the motion of fluid (Darcy's law) : 
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(B. 1.34) 

where V is the Darcy flux (LIT). Recalling Equation B. 1.23 and substituting 
into Equation B. 1.34, we obtain: 

Rearranging Equation B. 1.35 : 

(B. 1.35) 

(B. 1.36) 

and substituting Equation B. 1.32 into Equation B. 1.36, we get the Darcy flux 
equation for density-dependent flow in its final form: 

(B. 1.37) 

The density and dynamic viscosity are functions of chemical concentration 
and are assumed to take the following form: 

and 

(B. 1.38) 

(B. 1.39) 

where C is the chemical concentration (MIL3) and a,, a2, . . ., a,, a, are the 
parameters (L3/M) that are used to describe the concentration dependence of 
water density and dynamic viscosity. 
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In the specific case of seawater intrusion, the constitutive relation between 
fluid density and concentration takes the following form: 

P = po(l + 
(B. 1.40) 

where c is the dimensionless chemical concentration (actually divided by 
maximum) and E is the dimensionless density reference ratio defined as: 

(B. 1.41) 

where pm,, is the maximum density of the fluid (MIL3) and p, is the reference 
(freshwater) density (MIL3). It should be noted that Equation 3.9 implicitly 
assumes that the fluid is incompressible and under isothermal conditions 
(Galeati, Gambolati, and Neuman 1992). 

The initial conditions for the flow equations are stated as: 

h = h,(x,z) in R (B. 1.42) 

where R is the region of interest and hi is the prescribed initial condition for 
hydraulic head. Hi can either be obtained by solving the steady-state version 
of Equation 3.1 or alternatively by defining through field measurements. 

The specification of boundary conditions is probably the most critical and 
complex chore in flow modelling. As explained by Yeh (1987), the boundary 
conditions of the region of interest can be examined from a dynamic, physical, 
or mathematical point of view. From a dynamic standpoint, a boundary seg- 
ment can be either considered as impermeable or flow-through. On the other 
hand, from a physical point of view, such a segment could be classified as a 
soil-soil interface, soil-air interface, or soil-water interface. Lastly, from a 
mathematical point of view, the boundary segment can be classified as one of 
four types of boundary conditions, namely as (a) Dirichlet, (b) Neumann, 
(c) Cauchy, or (d) variable boundary conditions. In addition, a good numeri- 
cal model must be able to handle these boundary conditions when they vary 
on the boundary and are either abruptly or gradually time-dependent. 

The Dirichlet boundary condition is usually applied to soil-water interfaces, 
such as streams, artificial impoundments, and coastal lines, and involves pre- 
scribing the functional value on the boundary. The Neumann boundary condi- 
tion, on the other hand, involves prescribing the gradient of the function on 
the boundary and does not occur very often in real-world problems. This 
condition, however, can be encountered at the base of the media where natural 
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drainage occurs. The third type of boundary condition, the Cauchy boundary 
condition, involves prescribing the total normal flux due to the gradient on the 
boundary. Usually surface water bodies with known infiltration rates through 
the layers of the bottom of their sediments or liners into the subsurface media 
are administered by this boundary condition. If there exists a soil-air interface 
in the region of interest, a variable boundary condition is employed. In such 
a case, either Dirichlet or Cauchy boundary conditions dominate, mainly 
depending on the potential evaporation, the conductivity of the media, and the 
availability of water such as rainfall (Yeh 1987). 

From the above discussion, four types of boundary conditions can be 
specified for the flow equations depending on the physical location of the 
boundaries. These boundary conditions are stated as: 

a. Dirichlet boundary conditions: 

b. Neumann boundary conditions: 

c. Cauchy boundary conditions: 

d. Variable boundary conditions during precipitation period: 

(B. 1.43) 

(B. 1.44) 

(B. 1.45) 

(B. 1.46a) 
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(B. 1.46b) 

e. Variable boundary conditions during nonprecipitation period: 

= hp(xb,~b,~b,t)  On Bv (B . l .  46c) 

(B. 1.46d) 

(B. 1.46e) 

where n is the outward unit vector normal to the boundary; (x,,yb,z,) is the 
spatial coordinate on the boundary; &, a, and q, are the Dirichlet functional 
value, Neumann flux, and Cauchy flux, respectively; B,, B,, B,, and B, are 
the Dirichlet, Neumann, Cauchy, and variable boundaries, respectively; h, and 
q, are the allowed ponding depth and the throughfall of precipitation, respec- 
tively, on the variable boundary; h, is the allowed minimum pressure on the 
variable boundary; and q, is the allowed maximum evaporation rate 
(= potential evaporation) on the variable boundary. Note that only one of 
Equations B. 1.46a through B. 1.46e is utilized at any point on the variable 
boundary at any time. 

Governing Equations for Transport 

The governing equations for material transport through groundwater sys- 
tems are derived based on the laws of continuity of mass and flux. The major 
processes that are included are advection, dispersion/diffusion, decay, adsorp- 
tion, biodegradation through both liquid and solid phases, the compressibility 
of media, as well as source(s)/sink(s). Let C be the dissolved concentration 
and S be the adsorbed concentration. The equation governing the spatial- 
temporal distribution of dissolved concentrations can be obtained by applying 
this principle of mass balance in integral form as follows: 
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where 

v = material volume containing constant amount of media (L3) 

C = dissolved concentration (MIL3) 

S = adsorbed concentration (M/M) 

p,  = bulk density of the medium (MIL3) 

r = surface enclosing the material volume v (L2) 

n = outward unit vector normal to the surface I? 

V, = fluid velocity relative to the solid (LIT) 

J = surface flux with respect to fluid velocity V, [(M/T)/L2] 

K, = first-order biodegradation rate constant through dissolved phase 
(1 IT) 

K, = first-order biodegradation rate constant through adsorbed phase 
( 1 /TI 

X = decay constant (l/T) 

m = external source/sink rate per medium volume [(M/L3)/T] 

By the Reynolds transport theorem (Owczarek 1964), Equation B.2.1 can 
be written as 
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- I n.J dI' - (BKwC+pbKsS) dv- X(BC+p,S) dv (B.2.2) 
v Y 

where V, is the velocity of the solid. The fluid velocity relative to the solid 
V, and Darcy velocity V are related to each other by 

v = ev, ( ~ . 2 . 3 )  

Applying the Gaussian divergence theorem to Equation B.2.2 and using the 
fact that v is arbitrary, one can obtain the following continuity in differential 
form: 

The second term of Equation B.2.4 can be expressed as 

The first term on the right-hand side of Equation B.2.5 is the product of two 
small vectors and will be neglected. If all the displacement of the medium is 
assumed to be vertical (e.g., vertical consolidation), the solid velocity 
becomes 

The surface flux J has been postulated to be proportional to the gradient of C 
(Nguyen et al. 1982) as 
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where 

a, = transverse diffusivity (L) 

6 = Kronecker delta tensor 

IV I = the magnitude of the Darcy velocity V (LIT) 

a, = longitudinal diffusivity (L) 

a, = molecular diffusion coefficient (L2/T) 

r = tortuosity 

Substitution of Equations B .2.5 through B.2.8 into Equation B.2.4 yields 

~(~'C+P,S) 
+ V.  (VC) - V. (0D.VC) = - 

at 

Equation B.2.9 is simply the statement of mass balance over a differential 
volume. The first term represents the rate of mass accumulation, the second 
term represents the net rate of mass flux due to advection, the third term is 
the net mass flux due to dispersion and diffusion, the fourth term is the rate of 
mass production and reduction due to consolidation and radioactive decay, the 
fifth term is the degradation rate due to microbial transformation through 
aqueous and adsorbed phases, and the last term is the sourcelsink term 
corresponding to artificial injection and or withdrawal. 

Equation B.2.9 is written in conservative form. It has been suggested that 
using the advective form is sometimes more appropriate, especially if the 
finite element method is used to simulate the chemical transport equation 
(Huyakorn et al., 1986). More importantly, an advective form of transport 
equations allows one to use the mixed Lagrangian-Eulerian approach, which 
can better solve advection-dominant transport problems (Yeh and Tripathi 
1987). Therefore, an advective form of the transport equation is derived by 
expanding the advection term and using the continuity equation for water 
flow. The water flow equation can be rewritten in the following form 
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which is conservation of fluid mass. Substituting Equation B.2.10 into B.2.9 
and performing the necessary manipulation, we obtain 

Because Equation B.2.11 involves two unknowns, C and S, a constitutive 
relationship must be posed. For the present model, the following empirical 
relationships are used: 

S = K,C for linear isotherm (B.2.12) 

S = 
~rnxKC for Langmuir isotherm 
1 + KC 

S = KCn for Freundlich isotherm (B.2.14) 

where K, is the distribution coefficient (L3/M), s,, is the maximum concen- 
tration permitted in the medium in the Langmuir nonlinear isotherm, K is the 
coefficient in the Langmuir or Freundlich nonlinear isotherm, and n is the 
power index in the Freundlich nonlinear isotherm. 

In order to use the Lagrangian-Eulerian approach, Equation B .2.11 is 
rewritten as: 

a. For Linear Isotherm model: 
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b. For Langmuir and Freundlich models: 

where D,()/Dt and D,@/Dt denote the material derivatives of () with respect 
to time in reference to the retarded velocity V, and fluid velocity V,, 
respectively. 

To complete the description of the hydrological transport as given by Equa- 
tions B .2.15 or B .2.17, initial and boundary conditions must be specified in 
accordance with dynamic and physical consideration. It will be assumed that 
initially the dissolved concentrations are known throughout the region of 
interest, that is, 
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where Ci is the initial concentration and R is the region of interest. Initial 
concentrations for the dissolved concentrations may be obtained from field 
measurements or by solving the steady-state version of Equation B.2.15 or 
B.2.17 with time-invariant boundary conditions. 

The specification of boundary conditions is a difficult and intricate task in 
transport modeling. From the dynamic point of view, a boundary segment 
may be classified as either flow-through or impervious. From the physical 
point of view, it is a soil-air interface, or soil-soil interface, or soil-water 
interface. From the mathematical point of view, it may be treated as a 
Dirichlet boundary on which the total analytical concentration is prescribed, 
Neumann boundary on which the flux due to the gradient of total analytical 
concentration is known, or Cauchy boundary on which the total flux is given. 
An even more difficult mathematical boundary is the variable conditions on 
which the boundary conditions are not known a priori but are themselves the 
solution to be sought. In other words, on the mathematically variable 
boundary, either Neumann or Cauchy conditions may prevail and change 
with time. Which condition prevails at a particular time can be determined 
only in the cyclic processes of solving the governing equations (Freeze 1972a, 
1972b; Yeh and Ward 1980; Yeh and Ward 1981). 

Whatever point of view is chosen, all boundary conditions eventually must 
be transformed into mathematical equations for quantitative simulations. 
Thus, we will specify the boundary conditions from the mathematical point of 
view in concert with dynamic and physical considerations. The boundary 
conditions imposed on any segment of the boundary are taken to be either 
Dirichlet, Neumann, Cauchy, or variable. Thus, the global boundary may be 
split into four parts, B,, B,, B,, and B,, denoting Dirichlet, Neumann, 
Cauchy, and variable boundaries, respectively. The conditions imposed on 
the first three types of boundaries are given as: 

a. Prescribed concentration (Dirichlet) boundary conditions: 

b. Neumann boundary conditions: 

n-t-0D-VC) = q,(x,,y,,z,,t) on Bn 

c. Cauchy boundary conditions: 

n (VC - 0D.VC) = q,(x,, y,, z,, t) on Bc 
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where C, is the prescribed concentration on the Dirichlet boundary B,, 
(x,,y,,z,) is the spatial coordinate on the boundary, n is an outward unit vector 
normal to the boundary, a is the prescribed gradient flux through the 
Neumann boundary B,, and q, is the prescribed total flux through the Cauchy 
boundary B,. 

The conditions imposed on the variable-type boundary, which is normally 
the soil-air interface or soil-water interface, are either the Neumann with zero 
gradient flux or the Cauchy with given total flux. The former is specified 
when the water flow is directed out of the region from the far boundary, 
whereas the latter is specified when the water flow is directed into the region. 
This type of variable condition would normally occur at flow-through bound- 
aries. Written mathematically, the variable boundary condition is given by 

where C, is the specified concentration of water through the variable boundary 
and B, is the variable boundary. 
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Appendix C 
Numerical Formulation 

The initial-boundary value problem described by the governing equations 
of the flow and transport modules of 3DSALT along with the boundary condi- 
tions cannot, in general, be solved analytically using current applied mathe- 
matics. Hence, in order to solve these sets of governing equations, numerical 
methods are the only mathematical tools capable of handling this task. Even 
though there are many different numerical approximation methods capable of 
reducing partial differential equations to simpler systems of algebraic equa- 
tions, there are only two numerical methods that are most common and that 
can be employed to the most basic form of the governing equations. These 
two numerical methods are the finite difference and finite element methods. 
The basic difference between these two methods is that the finite element 
method is based upon approximating the function, while the finite difference 
method is founded upon approximating the derivatives of the function. There- 
fore, the finite difference method only produces solutions at discrete points, 
while the finite element method yields spatially continuous solutions. Also, 
the finite element method offers numerous advantages over the finite 
difference method, such as (a) anisotropy and heterogeneity of aquifers are 
easily taken care of, (b) it is not necessary to formulate special formulae to 
incorporate irregular boundaries, (c) computer storage and computational time 
can sometimes be saved because often fewer nodal points are needed to 
portray the region of interest to the same level of accuracy, (d) irregular grids 
for handling different levels of spatial discretization in different sections of the 
region of interest can be incorporated, and lastly, (e) the integral formulation 
used in this method permits the flux types of the boundary conditions to come 
about naturally (Yeh 1987).' Thus, the finite element method is used in this 
model. The theoretical background as well as numerical procedures of this 
method can be found in any good finite element method book, such as Istok 
(1989), and therefore will not be described here. A brief summary of the 
numerical procedure for applying the finite element method can be found in 
Yeh (1987). 

The flow module of 3DSALT includes four options for solving the finite 

' References cited in this Appendix are listed in the References at the end of the main text. 
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element equations. In other words, there are four iteration methods (block 
iteration, successive point iteration, polynomial preconditioned conjugate 
gradient, and incomplete Cholesky preconditioned conjugate gradient methods) 
for solving the linearized matrix equations. Direct elimination methods are 
not used in this report because it is impractical to deal with large three- 
dimensional problems. Because the Newton-Raphson method will yield a 
nonsyrnrnetric matrix, the Picard method is used to linearize the matrix 
equation. 

To handle a large variety of possible problem sets, the flow module for 
3DSALT contains 16 optional numerical schemes. Specifically, the mixture 
of schemes includes the combinations of (a) the four options for solving the 
resulting matrix equation as mentioned in the above discussion, (b) two 
options (lumping and consistent) for handling the mass matrix resulting from 
the storage term, and (c) two options (time-weighted difference and mid- 
difference) for approximating the time derivatives. The theoretical back- 
ground for (b) and (c) may also be found in any respectable matrix computa- 
tion book and in Yeh (1991). 

On the other hand, the transport module for 3DSALT also includes these 
16 options, plus more. While the Galerkin finite element method is used in 
the flow module, an option of either two conventional finite element methods, 
either the Galerkin finite element method or the upstream weighting finite 
element method, or the alternative option of a hybrid Lagrangian-Eulerian 
finite element method is provided in the transport module. The main differ- 
ence between the two conventional finite element methods is that while the 
Galerkin finite element method uses the base functions as the weighting func- 
tions, the upstream weighting finite element method uses weighting functions 
different from the base functions. The advantages of using the upstream 
weighting finite element method over the Galerkin finite element method 
become apparent when the advection terms in the transport governing equation 
are equally important to the dispersion terms (Yeh and Ward 1981). More 
details of the two conventional finite element methods may be found in Yeh 
and Ward (1981). 

Numerical Approximation of the Flow Equations 

Spatial discretization with the Galerkin finite element method 

When using the finite element method, the referenced pressure head is 
approximated by: 

(C. 1.1) 
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where h, and N, are the amplitude of h and the base function, respectively, at 
nodal point j and N is the total number of nodes. After defining a residual 
and forcing the weighted residual to zero, the flow equation, Equation B. 1.33, 
is approximated as: 

[ ~ ~ $ F i y d R ]  2 + [ ~ ( V ~ ) K - ( V \ ) I I R  ] $ =  1 N ~ / T ~ ~ R  - 

(C. 1.2) 

In matrix form, Equation C. 1.2 is written as: 

(C. 1.3) 

where {dhldt) and {h) are the column vectors containing the values of dhldt 
and h, respectively, at all nodes; [MI is the mass matrix resulting from the 
storage term; [S] is the stiff matrix resulting from the action of conductivity; 
{Q}, (G), and {B) are the load vectors from the internal sourcelsink, gravity 
force, and boundary conditions, respectively. Furthermore, the mass matrix, 
[MI, and stiff matrix, [ S ] ,  are described as: 

and 

S, = (VN:)*K (VN,') dR 
'EM. 

(C. 1.4) 

(C. 1.5) 

where R, is the region of element e, Me is the set of elements that have a local 
side a-P coinciding with the global side i-j, and N,' is the a-th local base 
function of element e. 

In addition, the three load vectors, {Q}, {G), and {B), are described as: 
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and 

(C. 1.6) 

(C. 1.7) 

(C. 1.8) 

where N,, is the set of boundary segments that have a local node a coinciding 
with the global node i, and Be is the length of boundary segment e. 

In most finite element work, the Darcy velocity components given in 
Equation B. 1.37 are calculated numerically by taking the derivatives of the 
simulated h as 

(C. 1.9) 

The above formulation results in a velocity field which is not continuous at 
element boundaries and nodal points if the variation of h is other than linear 
or constants. The alternative approach would be to apply the Galerkin finite 
element method to Equation B. 1.37; thus one obtains 

[TI ivy1 = {DYl 
(C. 1.11) 
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where the matrix [TI and the load vectors {D,), {D,), and {D,) are given by 

(C. 1.13) 

(C. 1.14) 

(C. 1.16) 

where V,, V,, and V, are the Darcy velocity components along the x-, y-, and 
z-directions, respectively, and i ,  j, and k are the unit vector along the x-, y-, 
and z-coordinates, respectively. 

The reduction of the partial differential equation (Equation B. 1.33) to the 
set of ordinary differential equations (Equation C. 1.3) simplifies to the evalua- 
tion of integrals on the right-hand side of Equations C. 1.4 through C. 1.8 for 
every element for boundary surface e. The major tasks that remain to be done 
are the specification of base and weighting functions and the performance of 
integration to yield the element matrices. Linear hexahedral elements are 
employed in this documentation. 

Base and weighting functions 

The construction of base functions for hexahedral elements is best accom- 
plished using the local coordinates ( ( ,v ,n.  In the local coordinates, the 
original hexahedral eiement is mapped into a cubic whose corners are located 
at 4 = + 1, 17 = + 1, and r = + 1 as shown in Figure C. 1. For tri-linear 
hexahedral elements, the eight base functions are obtained by taking the tensor 
product of the three base functions for the linear line elements as 
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Figure C. 1. A hexahedral element in local coordinates 

Because the Galerkin finite element method is used to solve the flow equa- 
tions, the set of eight weighting functions is taken as the same set of eight 
base functions. 

Numerical integration 

To complete the reduction of the partial differential equation 
(Equation B. 1.33) to the ordinary differential equation (Equation C. 1.3), one 
has to evaluate the integrals on the right sides of Equations C. 1.4 through 
C. 1.8 for every element to yield the element mass matrix [Me] and the stiff 
element matrix [Se] as well as the element gravity column vector {Ge), the 
sourcelsink column vector {Q'), and the boundary column vector {Be) as 

Appendix C Numerical Formulation 



and 

s,'~ = (VN,') K -(VN,'? dR a (C. 1.19) 

(C. 1.20) 

(C. 1.21) 

(C. 1.22) 

Since Equations C. 1.18 through C. 1.22 are written in global coordinate 
and the base functions are defined in local coordinate, a transformation 
between the global and local coordinate is needed. The required 
transformation from global coordinate to local coordinate is obtained via the 
base functions as 

(C. 1.23) 

(C. 1.24) 

(C. 1.25) 

Because the coordinate transformation uses the base functions, the element is 
termed the "isoparametric" element. 

Using the transformation in Equations C. 1.23 through C. 1.25, we convert 
the differentiation of the base function with respect to the global coordinate to 
that with respect to local coordinate by 
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(C. 1.26) 

ax ay az [Jl= - - -  / an an an 1 [J1-' = Inverse of [JJ 

where [J] is the Jacobian of the transformation. In the mean time, a differen- 
tial volume written in local coordinate becomes 

(C. 1.27) 

With Equations C. 1.26 and C. 1.27, all the integrals in Equations C. 1.18 
through C. 1.21 can be reduced to the following form 

(C. 1.28) 

the integration of which can easily be carried out with a 2 x 2 x 2 = 8-point 
Gaussian quadrature. The surface integration of Equation C. 1.22 in three- 
dimensional space is not as straightforward as in two-dimensional space. This 
integration requires further elaboration. Any surface integral of a continuous 
function F(x,y,z) specified on the surface S (Figure C.2) can be reduced to the 
area integration. Let I represent the surface integral: 

(C. 1.29) 
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(C. 1.30) 

Let P be any point on the surface S with coordinates (x,y,z) or (i,q) (Fig- 
ure C.2). Then the vector r from 0 to P is given by 

The tangent vectors to the coordinate curves 2: = 2:. and q = q, on the surface 
S are arlaq and aria{, respectively. The area dS is given by 

where x represents vector multiplication. But 
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so that 

where 

(C. 1.33) 

(C. 1.34) 

Substituting Equation C. 1.34 into Equation C. 1.29, we obtain 

(C. 1.35) 

where 

Surface integrals (Equation C. 1.36) can easily be computed by Gaussian 
quadrature. 

Mass lumping option 

Referring to [MI, one may recall that this is a unit matrix if the finite 
difference formulation is used in spatial discretization. Hence, by proper 
scaling, the mass matrix can be reduced to the finite-difference equivalent by 
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lumping (Clough 1971). In many cases, the lumped mass matrix would result 
in better solution, in particular, if it is used in conjunction with the central or 
backward-difference time marching (Yeh and Ward 1980). Under such cir- 
cumstances, it is preferred to the consistent mass matrix (mass matrix without 
lumping). Therefore, options are provided for the lumping of the matrix [MI. 
More explicitly, [MI will be lumped according to: 

and 

M( = 0 if j + \ i  (C. 1.39) 

Finite difference approximation in time 

Next, we derive a matrix equation by integrating Equation C. 1.3. For the 
time integration of Equation C. 1.3, the load vector {B} will be ignored. This 
load vector will be discussed in the next section on the numerical implementa- 
tion of boundary conditions. An important advantage in finite element 
approximation over the finite difference approximation is the inherent ability 
to handle complex boundaries and obtain the normal derivatives therein. In 
the time dimension, such advantages are not evident. Thus, finite difference 
methods are typically used in the approximation of the time derivative. Two 
time-marching methods are adopted in the present flow model. 

The first one is the time weighted method written as: 

(C. 1.40) 

where [MI, [S], {Q}, and {G) are evaluated at (t + wAt). In the Crank- 
Nicholson centered-in-time approach w = 0.5, in the backward-difference 
(implicit difference) w = 1 .O, and in the forward-difference (explicit scheme) 
w = 0.0. The central-Nicholson algorithm has a truncation error of O(At2), 
but its propagation-of-error characteristics frequently lead to qscillatory 
nonlinear instability. Both the backward-difference and forward-difference 
have a truncation error of O(At). The backward-difference is quite resistant to 
oscillatory nonlinear instability. On the other hand, the forward difference is 
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only conditionally stable even for linear problems, not to mention nonlinear 
problems. 

In the second method, the values of unknown variables are assumed to 
vary linearly with time during the time interval, At. In this mid-difference 
method, the recurrence formula is written as: 

and 

(C. 1.41) 

(C. 1.42) 

where [MI, [S], and {Q) are evaluated at (t +At/2). 

Equations C. 1.40 and C. 1.41 can be written as a matrix equation 

[r]{h) = {r) 3 

(C. 1.43) 

where [TI is the matrix, {h) is the unknown vector to be found and represents 
the values of discretized pressure field at new time, and {Y) is the load 
vector. Take for example, Equation C. 1.40 with w = 1.0, [TI and (Y) 
represent the following: 

[r] = Inn] + [s] 
At 

and 

(C. 1.44) 

(C. 1.45) 

where {h) is the vector of the discretized pressure field at previous time. 
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Numerical implementation of boundary conditions 

The following steps are the incorporation of boundary conditions into 
matrix equation by finite element method. For the Cauchy boundary condi- 
tion given by Equation B. 1.45, we simply substitute Equation B. 1.45 into 
Equation C. 1.22 to yield a boundary-element column vector {B,') for a 
Cauchy segment: 

where {qCe) is the Cauchy boundary flux vector given by 

(C. 1.46) 

(C. 1.47) 

The Cauchy boundary flux vector represents the normal fluxes through the 
two nodal points of the segment Be on B,. For the Neumann boundary 
condition given by Equation B. 1.44, we substitute Equation B. 1.44 into 
Equation C. 1.22 to yield a boundary-element column vector {B,'} for a 
Neumann segment: 

where {q,,,e} is the Neumann boundary flux vector given by: 

(C. 1.48) 

(C. 1.49) 

which is independent of pressure head. 

The implementation of variable-type boundary condition is more involved. 
During the iteration of boundary conditions on the variable boundary, one of 
Equations B. 1.46a-B. 1.46e is used at a node. If either Equation B. 1.46b or 
B. 1.46e is used, we substitute it into Equation C. 1.22 to yield a boundary 
element column vector {B,") for a variable boundary segment: 

(C. 1.50) 
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where (q,") is the variable boundary flux given by: 

Assembling over all Neumann, Cauchy, and variable boundary segments, we 
obtain the global boundary column vector {B) as: 

in which 

(C. 1.52) 

(C. 1.53) 

where N,,, N,,, and N,, are the number of Neumann boundary segments, 
Cauchy boundary segments, and variable boundary segments with flux condi- 
tions imposed on them, respectively. The boundary flux {B) given by Equa- 
tions C. l .52 and C. l .53 should be added to the right-hand side of 
Equation C. 1.43. 

At nodes where Dirichlet boundary conditions are applied, an identity 
equation is generated for each node and included in the matrices of Equa- 
tion C. l .43. The Dirichlet nodes include the nodes on the Dirichlet boundary 
and the nodes on the variable boundary to which either Equation B. 1.46a, 
B. 1.46c, or B. 1.46d is applied. 

After time discretization of Equation C. 1.3 and incorporation of boundary 
conditions, we obtain the following matrix equation 

(C. 1.54) 

where [C] is the coefficient matrix and {R) is the known vector of the right- 
hand side. For the saturated-unsaturated flow simulation, [C] is a highly 
nonlinear function of the pressure head {h). 
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Solution of the matrix equations 

Equation C. 1.54 is in general a banded sparse matrix equation. It may be 
solved numerically by either direct methods or iteration methods. In direct 
methods, a sequence of operation is performed only once. This would result 
in each solution except for round-off error. In this method, one is concerned 
with the efficiency and magnitude of round-off error associated with the 
sequence of operations. On the other hand, in an iterative method, one 
attempts the solution by a process of successive approximations. This 
involves making an initial guess, then improving the guess by some iterative 
process until an error criterion is obtained. Therefore, in this technique, one 
must be concerned with convergence and the rate of convergence. The round- 
off errors tend to be self-corrected. 

For practical purposes the advantages of direct method are as follows: 
(a) the efficient computation when the bandwidth of the matrix [C] is small, 
and (b) no problem of convergency is encountered when the matrix equation is 
linear or less severe in convergence than iterative methods even when the 
matrix equation is nonlinear. The disadvantages of direct methods are the 
excessive requirements on CPU storage and CPU time when a large number 
of nodes are needed for discretization. On the other hand, the advantages of 
iteration methods are efficiencies in terms of CPU storage and CPU time 
when large problems are encountered. Their disadvantages are the require- 
ments that the matrix [C] must be well conditioned to guarantee a convergent 
solution. For three-dimensional problems, the bandwidth of the matrix is 
usually large; thus the direction solution method is not practical. Only the 
iterative methods are implemented in 3DSALT. Four iteration methods are 
used in solving the linearized matrix equation: (a) block iteration, (b) 
successive point iteration, (c) polynomial preconditioned conjugate gradient 
method, and (d) incomplete Cholesky preconditioned conjugate gradient 
method. 

The matrix equation, Equation C. 1.54, is nonlinear because both the 
hydraulic conductivity and the water capacity are functions of the pressure 
head h. To solve the nonlinear matrix equation, two approaches can be taken: 
(a) the Picard method and (b) the Newton-Raphson method. The Newton- 
Raphson method has a second order of convergent rate and is very robust. 
However, the Newton-Raphson method would destroy the symmetrical prop- 
erty of the coefficient matrix resulting from the finite element approximation. 
As a result the solution of the linearized matrix equation requires extra care. 
Many of the iterative methods will not warrant a convergent solution for the 
nonsyrnmetric linearized matrix equation Thus, the Picard method is used in 
this report to solve the nonlinear problems. 

In the Picard method, an initial estimate is made of the unknown (h). 
Using this estimate, we then compute the coefficient matrix [C] and solve the 
linearized matrix equation by the method of linear algebra. The new estimate 
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is now obtained by the weighted average of the new solution and the previous 
estimate: 

(C.  1.55) 

where (h(k+l)) is the new estimate, {hk) is the previous estimate, {h) is the 
new solution, and w is the iteration parameter. The procedure is repeated 
until the new solution {h) is within a tolerance error. If w is greater than or 
equal to 0 but is less than 1, the iteration is under-relaxation. If w = 1, the 
method is the exact relaxation. If w is greater than 1 but less than or equal to 
2, the iteration is termed over-relaxation. The under-relaxation should be 
used to overcome cases when nonconvergency or the slow convergent rate is 
due to fluctuation rather than due to "blowup" computations. Over-relaxation 
should be used to speed up convergent rate when it decreases monotonically. 

In summary, there are 16 optional numerical schemes here to deal with as 
wide a range of problems as possible. These are the combinations of (a) two 
ways of treating the mass matrix (lumping and no-lumping); (b) two ways of 
approximating the time derivatives (time-weighting and mid-difference), and 
(c) four ways of solving the linearized matrix equation. 

Transport Equation 

Spatial discretization with the weighted residual finite element 
method 

Let Cj be approximated by a finite element interpolation as 

Neglecting the fluid and medium compressibilities, ignoring the biodegrada- 
tion, substituting Equation C.2.1 into Equations B.2.11, B.2.15, and B.2.17, 
and forcing a weighted residual to zero, we obtain the following ordinary 
differential equations: 

a. For the conventional finite element approach 
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b. For the Lagrangian-Eulerian approach with a linear isotherm: 

VNi.OD-VTdR {C} + Ni X 0 +pb- [I 1 1 1 [ [  :]]-R){C}+ 

c. For the Lagrangian-Eulerian approach with a nonlinear isotherm: 
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The above equations, Equations C.2.2 through C.2.4, are written in matrix 
form as: 

a. For the conventional finite element approach 

b. For the Lagrangian-Eulerian approach with the linear isotherm 

c. For the Lagrangian-Eulerian approach with nonlinear isotherms 
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where {C) is a vector whose components are the concentrations at all nodes, 
{dC/dt) is the derivative of {C) with respect to time, [MI and [M,] are the 
mass matrices associated with the material derivative term, [MJ is a mass 
matrix associated with the partial derivative term, [Dl is the stiff matrix asso- 
ciated with the dispersion term, [A] is the stiff matrix associated with the 
advection term, [K] is the stiff matrix associated with all the first-order terms, 
{Q) is the load vector associated with all zero-order derivative terms, and {B) 
is the load vector associated with boundary conditions. The above matrices 
and vectors are given as: 

where C, is the concentration of the source. 
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Base and weighting functions 

For the case of flow, the weighting functions are taken as the same set as 
the base functions. However, in transport formulation using finite element 
methods with the Eulerian approach, sometimes it is advantageous to use the 
weighting functions which are one or two orders higher than the weighting 
functions: (N+ 1) or (N+2) upstream weighting. Here, we will only present 
the N + 1 upstream weighting functions. Recently the N + 2 weighting 
functions have been the subject of several investigations. The success of the 
N+2 weighting is still under investigation. They will not be included here. 
First define, for the line element, the following N+ 1 upstream weighting 
functions 

where a is the weighting factor along the line from node 1 to node 2 
(Figure C .3). 

Figure C.3. Weighting factor along a line element 

Then the weighting functions are obtained by an appropriate tensor product: 

w, = Fl(~,~1)F1(77,PI)Fl(~,yl) (C.2.18) 
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where a 's ,  P's, and $'s are the weighting factors along the side given in 
Figure C.4. 

Figure C.4. Upstream weighting factors along 12 sides of a hexahedral 
element 

Numerical integration 

To complete the reduction of the partial differential equations 
(Equations B -2.1 1, B .2.15, and B .2.17) to the ordinary differential equations 
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(Equations C.2.5 through C.2.7), one has to evaluate the integrals on the right 
sides of Equations C.2.8 through C.2.15 for every element to yield the 
element mass matrices [Me], [M,e], and [M,'] and the stiff element matrices 
[Ae]], [De], and [K'] as well as the sourcelsink column vector {Q'} and the 
boundary column vector {Be} as 

Q,"= N," -Xpb S+-C + qCin dR r [  [ $ I  I 
B,' = - N,'n .(-OD . V C ) ~ B  6. 

Following the procedures presented in the section, "Numerical 
integration," page C6, we first transform Equations C.2.26 through C.2.33 in 
terms of local coordinate. Then we integrate the resulting equations with the 
Gaussian quadrature. The transformation between the global and local 
coordinates is also given by Equations C. 1.23 through C. 1.25 resulting in 
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isoparametric elements. The surface integration from the boundary conditions 
also follows that presented in the section, "Numerical integration." 

Mass lumping option 

As with the solution of flow equations, a consistent mass matrix or mass 
lumping option can be used when the Eulerian approach is used. Although a 
consistent mass matrix option can also be used when the hybrid Lagrangian- 
Eulerian approach is taken, a mass lumping scheme is more appropriate and 
easier to implement. 

Finite difference approximation in time 

When the Eulerian approach is taken in approximating the governing equa- 
tions, we can use either time-weighted difference or mid-difference as in 
Equations C. 1.40 through C. 1.45. However, when the Lagrangian-Eulerian 
approach is taken, the time integration is different from that for flow 
problems. Although we still have a choice of time-weighted difference or 
mid-difference, we prefer to using the time-weighted difference scheme. In 
the following we demonstrate the time integration for the Lagrangian-Eulerian 
approach. As in the time integration of flow equations, the boundary load 
vector will be ignored in the time integration of the transport equations in this 
section. This load vector will be discussed in the next section. 

In the Lagrangian-Eulerian approach, Equations C.2.6 and C.2.7 are inte- 
grated along the characteristic lines. We will first integrate Equation C.2.6 
for the case of linear isotherms. Then we will integrate Equation C.2.7 for 
the case of nonlinear isotherms. The time-weighted integration of Equation 
C.2.6 yields 

where AT is the time-step size (the determination of AT will soon become 
clear), (Cn+') is the concentration vector containing the concentration at all 
nodes at the new time n+ 1, and {C*) is the Lagrangian concentration vector. 
The Lagrangian concentration {C*) is computed by the backward method of 
characteristics as follows. 
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t+AI 

xi* = xi - 1 vgt 

where xi* (the Lagrangian point) is the location of the fictitious particle origi- 
nating at time t would arrive at the node xi at time t+At, Cj(t) is the value of 
concentration at node j at time t and N,(xi*) is the interpolation function asso- 
ciated with node j evaluated at the Lagrangian point xi*. If xi' is found to 
locate in the interior of the region of interest, we set AT in Equation C.2.34 as 

If Ax' is found to locate outside the region of interest, we must find a AT(x~\) 
as a function of xi* such that 

will locate on the boundary. Thus, it is seen that AT is less than or equal to 
At. 

For the case of nonlinear isotherm, we integrated Equation C.2.7 to yield 

The computation of AT and the Lagrangian concentrations C* in Equa- 
tion C.2.38 follows Equations C.2.35 through (2.2.37 but with V, replaced by 
Vf . 
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Numerical Implementation of Boundary Conditions 

To incorporate the boundary conditions, we have to evaluate the right-hand 
side of Equation 3.2.9 for every boundary segment Be to yield the load vector 
{Be) : 

For the Neumann boundary condition given by Equation B.2.21, we simply 
substitute Equation B .2.2 1 into Equation C .2.33 to yield a boundary-element 
column vector {B,') for a Neumann segment: 

where {ae )  is the Neumann boundary flux vector given by 

This Neumann boundary flux vector represents the normal fluxes through the 
two nodal points of the segment Be on B,. 

For the Cauchy boundary condition given by Equation B.2.22, we may 
rewrite Equation C.2.33 in the following form: 

The concentration on the boundary segment B, can be approximated by 

Substituting Equations B.2.22 and C.2.43 into Equation C.2.42, we obtain 
boundary-element column vector (B,') for a Cauchy segment: 
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in which the Cauchy boundary flux vector {q,'} and the Cauchy boundary 
matrix [V,'] from the normal velocity component are given by 

and 

V& = ~ N , ' ~ - v N ; ~ B ,  a = 1, 2 and /3 = 1, 2 

Segments on which the variable boundary conditions are imposed are the 
flow-through boundaries on which the flow direction is not known a priori. 
When the flow is directed into the region, Cauchy boundary conditions will be 
used. The boundary-element column vector {B,') for a variable-boundary 
segment can be obtained similar to {B;): 

in which the variable-boundary flux vector {q,') and the variable-boundary 
matrix p,'] from the normal velocity component are given by: 

qv: = -IN.'(n.V)cindB, n = 1, 2 (C.2.47) 

and 

Vv:o = [N,'~.vN,'~B, n = 1, 2 and 6 = 1, 2 

where C, is the total dissolved concentration of the incoming fluid. When the 
flow is directed out from the region, both {q,') and p,'] are set equal to 0. 

Assembling over all Neumann, Cauchy, and variable boundary segments, 
we obtain the global boundary column vector {B} as: 
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in which 

where N,,, N,,, and N,, are the number of Neumann, Cauchy, and variable- 
boundary segments, respectively. 

At nodes where Dirichlet boundary conditions are applied, an identity 
equation is generated for each node and included in the matrices of Equa- 
tion C.2.34 for the case of linear isotherms or C.2.38 for the case of 
nonlinear isotherms. The detailed method of applying this type of boundary 
condition can be found elsewhere (Wang and Connor 1975). 

Boundary conditions need to be implemented in the computation of the 
Lagrangian concentrations {C*). Neumann boundary conditions are normally 
applied to the boundary when flow is directed out from the region of interest. 
On the Neumann boundary, the back tracking would locate xi* in the interior 
of the domain; hence the Lagrangian concentration at the i" Neumann bound- 
ary node is simply computed via interpolation. On the Dirichlet boundary 
nodes, the Lagrangian concentration is simply set to the specified value. 

On the variable boundary, boundary conditions need not be implemented if 
the flow is directed out from the region. If the flow is directed into the 
region, the concentration of incoming fluid is specified. An intermediate con- 
centration C** is calculated according to 

where C," is the concentration due to the boundary source at the boundary 
node i, V, is the normal vertically integrated Darcy's velocity, and C, is the 
concentration of incoming fluid. 

Cauchy boundary conditions are normally applied to the boundary where 
flow is directed into the region, where the material flux of incoming fluid is 
specified. The intermediate concentration is thus calculated according to 
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where C," is the concentration due to Cauchy fluxes at the boundary node i, 
V, is the normal Darcy's velocity, and q, is the Cauchy flux of the incoming 
fluid. 

The Lagrangian concentration is obtained by using the value Ci8* and C; 
(the concentration at previous time-step) as follows: 

NiOyCi * * dB + NpbKpjC;dB 
c.' = forlinear isotherm (C.2.52) 1 Ni(e+~bKd)dB 

Ci' = Ci* * for nonlinear isotherm (C.2.53) 

Solution of the Matrix Equations 

Because the Lagrangian-Eulerian approach results in a symmetric positive 
definite matrix, the system of the algebraic equations can be solved by any of 
the four options: the block iteration, the successive point iteration, the poly- 
nomial preconditioned conjugate gradient, and the incomplete Cholesky pre- 
conditioned conjugate gradient methods. For the Eulerian approach, however, 
the block iteration and successive point iteration methods are the preferred 
choice for solving the matrix equation. Especially when the advection trans- 
port is dominant, the two basic iteration methods with under-relaxation are 
very effective in reducing the number of iterations required for a convergent 
solution (Yeh 1985). 
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